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Abstract
The detection of anomalous samples in large,
high-dimensional datasets is a challenging task
with numerous practical applications. Recently,
state-of-the-art performance is achieved with
deep learning methods: for example, using the
reconstruction error from an autoencoder as
anomaly scores. However, the scores are uncal-
ibrated: that is, they follow an unknown distri-
bution and lack a clear interpretation. Further-
more, the reconstruction error is highly influ-
enced by the ‘hardness’ of a given sample, which
leads to false negative and false positive errors.
In this paper, we empirically show the signifi-
cance of this hardness bias present in a range
of recent deep anomaly detection methods. To
mitigate this, we propose an efficient and plug-
and-play error calibration method which miti-
gates this hardness bias in the anomaly scoring
without the need to retrain the model. We verify
the effectiveness of our method on a range of im-
age, time-series, and tabular datasets and against
several baseline methods.

1 Introduction
The rapid growth in large-scale sensor data has led to the
need tomonitor and detect unusual samples, or anomalies,
automatically. This is of vital importance in a wide vari-
ety of applications, ranging frommedical, spatio-temporal,
industrial, and many others. Recently, there has been
a surge of interest in the use of deep learning meth-
ods to achieve more accurate anomaly detection in high-
dimensional data such as images, time series, and sensor
data. For each sample, the anomaly detection algorithm
will output an anomaly score, where a higher score indi-
cates a higher likelihood of the sample being anomalous.
In most practical cases, the proportion of anomalous sam-
ples is extremely low relative to the normal samples and it
can be very difficult to acquire accurately labelled anoma-
lies. Therefore, unsupervised techniques which focus on
learning the distribution of only the normal data are most
practical. Autoencoders are a particularly popular algo-
rithm within this approach [Aggarwal, 2015; Chen et al.,
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Figure 1: Left Top: Before calibration, the anomaly score (recon-
struction error) is correlated with sample hardness, leading to
false negatives (blue) and false positives (red). Left Bottom: The
distribution of reconstruction error differs across hardness levels.
Right Top: Calibration adjusts the distribution of anomaly scores
to make them comparable across different hardness levels. This
leads to reductions in false positives and false negatives. Right
Bottom: After calibration, the scores are similarly distributed, and
hence comparable, across hardness levels.

2018]; the network is trained with a training set of all nor-
mal samples and the reconstruction error is used to deter-
mine anomalies from the unseen data.
A major problem with many of these algorithms is that

their anomaly scores are uncalibrated; that is, the scores
follow an unknown distribution, and therefore lack a clear,
consistent interpretation. In practice, flagging a sample as
anomalous often results in manual inspection, which can
be costly. Therefore, it is beneficial to have calibrated
scores, which allow for a clear, consistent interpretation
and measure how far a sample is away from the normal
data distribution.
Calibration also helps to mitigate another significant

problem for unsupervised anomaly detection methods,
which we call the ‘hardness bias’. We define ’hardness’
formally in Section 3.2, but in short, hardness is an intrin-
sic and simple characteristic of a data sample to estimate
how difficult it is to model a sample. Surprisingly, we find
that existing anomaly detection approaches fail to take the



effect of hardness into account, which leads to hardness
bias and significant degradation in accuracy.
In this paper, we first show that a significant hardness

bias exists in a range of deep anomaly detection methods
through empirical observations with real data. We then
propose our CADET framework for calibrated anomaly
detection. Inspired by ideas from post-hoc calibration of
machine learning models and the statistical framework of
conformal prediction, this approach calibrates an anomaly
detection algorithm to address the hardness bias problem
while also providing (approximate) theoretical guarantees
on false positive probability.
Overall, the benefits of our approach1 are as follows:
1. Generality: Our calibration framework can be flexi-

bly applied on top of a wide variety of anomaly detec-
tion modules.

2. Accuracy: By mitigating the problem of hardness
bias, our approach consistently improves the accuracy
of existing anomaly detection approaches.

3. Efficiency: Our approach results in virtually no in-
crease in overall computation time over the original
anomaly detection approach (shown in the supple-
mentary material) and requires no retraining of any
pre-trained model.

4. Probabilistic Guarantee: Unlike many existing ap-
proaches which return scores from an unknown dis-
tribution, our approach returns scores with a more
clear and consistent interpretation, and provides a
probabilistic guarantee decision rule that the false
positive rate can be approximately tuned to a user-
defined threshold 𝜀 > 0.

2 RelatedWork
Anomaly Detection
Unsupervised anomaly detection based on deep learning
has led to a wide variety of approaches; see [Pang et al.,
2021] for a survey. Typically, they learn a model of normal
data, enabling them to identify anomalies which deviate
from the learned distribution.
Reconstruction-based methods are one of the most pop-

ular anomaly detection approaches, especially for high-
dimensional data like image data. A wide variety of au-
toencoder variants exist, including convolutional [Chen et
al., 2018], variational [An, 2015; Yao et al., 2019], robust
[Zhou and Paffenroth, 2017; Goodge et al., 2020] and de-
noising [Zhao et al., 2017] autoencoders. These achieve
good performance, but few works have explored the latent
bias existing in these models. Our work shows the pres-
ence of ‘hardness bias’ in these popular models, and pro-
poses to mitigate it using a flexible post-hoc framework.
Other approaches include likelihood-based models,

which produce a likelihood or confidence score for an in-
stance being anomalous, such as using flow-based den-
sity estimation [Dinh et al., 2016]; adopting a specialised
loss function [Menon and Williamson, 2018]; as well as

1https://github.com/d-ailin/CADET

graph neural networks [Deng andHooi, 2021; Goodge and
Hooi, 2022]. In contrast, our method is proposed as a post-
hoc method to mitigate hardness bias given a previously
trained model.
Post-hoc Calibration
Calibration of neural networks aims to more accurately
capture the certainty or uncertainty of their predic-
tions [Yu et al., 2011]. Instead of predicting class values
directly, calibration aims to align the predicted probability
score with the accuracy, which is especially important in
safety-critical domains such as medical testing or drug dis-
covery.
In recent years, neural network calibration has increas-

ingly attracted research attention, mostly using post-hoc
calibration methods. For example, Temperature Scal-
ing [Guo et al., 2017] trains a single scalar parameter 𝑇
based on Platt scaling to calibrate and provide the confi-
dence scores, while Bayesian Binning [Naeini et al., 2015]
is a non-parametric Bayesian method which calibrates us-
ing a binning approach. However, existing post-hoc cali-
bration methods focus on supervised classification; more-
over, our approach uses calibration to adjust for observed
biases, which explores an orthogonal direction to existing
works. Inspired by post-hoc calibration, we propose a cali-
brationmechanism for anomaly scores tomitigate bias and
provide scores with a probabilistic interpretation for use in
anomaly detection problems.
Conformal Prediction
Conformal prediction is a statistical framework for con-
structing distribution-free prediction intervals. The key
appeal of conformal prediction is to provide finite-sample,
distribution-free coverage with the use of exchangeabil-
ity [Vovk et al., 2005]. Conformal prediction has been ex-
tended to split conformal prediction, which allows for cov-
erage guarantees with greater efficiency compared to the
classical framework [Lei et al., 2018]. The theoretical prop-
erties and computational efficiency of conformal predic-
tion have attracted attention and led to follow-up studies
in regression, classification and other applications, espe-
cially in safety-critical applications that require probabilis-
tic guarantees [Romano et al., 2019; Romano et al., 2020;
Eklund et al., 2015; Cortés-Ciriano and Bender, 2019].
Conformal prediction has also been used for calibrating

existing predictive systems, to ensure that the predictive
output of a model is probabilistically calibrated [Vovk et
al., 2020]. Our approach adopts similar techniques from
conformal prediction to obtain our theoretical guarantees,
but differs in our goal of providing decision rules for user-
given false positive coverage in an anomaly detection set-
ting.

3 Proposed Method
3.1 Problem Definition
We focus on the following formulation of the anomaly de-
tection task: given a set of training samples𝐗train all of the
normal class and a test set𝐗test, each of which may be nor-
mal or anomalous, our aim is to devise a scoring func-

https://github.com/d-ailin/CADET


tion 𝑠(𝐱) ∈ ℝwhich assigns low scores to normal samples
and high scores to anomalies in 𝐗test. While the scores of
most anomaly detection approaches are uncalibrated and
do not have a clear and consistent interpretation, we want
our scores 𝑠(𝐱) to be calibrated for a more clean and con-
sistent interpretation for measuring how far a sample is
away from the normal data distribution.
In addition to the scores, we output a binary decision

𝐷𝜀(𝐱), where 𝐷𝜀(𝐱) = 1 indicates that 𝐱 is labelled as an
anomaly, and 𝐷𝜀(𝐱) = 0 indicates otherwise. We would
like this to be accompanied by a false positive guarantee:
that is, given a user-specified threshold 𝜀 > 0, at test time,
the probability that a normal sample is falsely labelled as
an anomaly should be bounded by 𝜀.
In ourwork, wemainly focus on reconstruction-based

anomaly detection methods, which rely on the reconstruc-
tion error Err(𝐱):

Err(𝐱) = ‖𝐱 −𝑀(𝐱)‖ (1)
for input sample 𝐱 and𝑀(𝐱) the output of a deep anomaly
detection model.
Of particular interest in thiswork is the relation of a sam-

ple’s hardness to its reconstruction error. Therefore, the
fundamental question we aim to solve is:
For a given sample 𝐱, how can we use its reconstruction

𝑀(𝐱) and hardness𝐻(𝐱) to determine its label between nor-
mal and anomaly?

3.2 Sample Hardness Measures
We next propose a formal definition for the hardness of
a sample, which we will use in our subsequent empirical
observations and our calibration framework. Intuitively,
hardness is a measure of how difficult it is to model a given
sample. For generality, we give a framework definition of
the hardness function as𝐻∶ 𝒳 → ℝ, where𝒳 is the input
space:

𝐻(𝐱) = ‖𝐱 − Null(𝐱)‖, (2)
where Null is a family of ‘null models’. Intuitively, the
null models are simple models which can be interpreted as
‘naive’ reconstructions of the data 𝐱. Samples with higher
hardness are samples that deviate away from Null, regard-
less of its normal or anomalous status. As we will later ob-
serve, evenwithin the set of normal data, some samples are
harder to model than others; as a result, these harder sam-
ples would typically be given higher anomaly scores by the
anomaly detection model, leading to a higher chance for
false positive errors.
Various null models are possible, depending on the data

type, and we now propose specific null models to quantify
the hardness for different data types.
Image Data
For an image 𝐱 ∈ ℝ𝑊×𝐻×𝐷 , define the null model as:

Null(𝐱)𝑖,𝑗,𝑑 =
1
4(𝐱𝑖+1,𝑗,𝑑 + 𝐱𝑖−1,𝑗,𝑑 + 𝐱𝑖,𝑗+1,𝑑 + 𝐱𝑖,𝑗−1,𝑑),

(3)
i.e. Null(𝐱) ∈ ℝ𝑊×𝐻×𝐷 is calculated by average-pooling
the pixel values from the adjacent pixels in the height and

False Negatives False Positives 

Average Hardness: 0.093 Average Hardness: 0.342

Figure 2: Examples of false negatives and false positives based on
reconstruction error, with T-shirts designated as normal data.

width dimensions2. Intuitively, images with large differ-
ences in values between nearby pixels are given higher
hardness scores than images which are smoother.
Time-Series Data
For a time series 𝐱 ∈ ℝ𝑇×𝐷 , we use an autoregressive null
model as follows:

Null(𝐱)𝑡,𝑑 = 𝑐𝑑 +
𝑝∑

𝑖=1
𝜑𝑖,𝑑𝐱𝑡−𝑖,𝑑, (4)

where 𝜑𝑖,𝑑 is the parameters of the model and 𝑐𝑑 is a con-
stant. That is, Null(𝐱) ∈ ℝ𝑇×𝐷 is computed by a linear
combination of values from earlier time steps for each time
series. Similarly to image data, a time-series that changes
more drastically with respect to recent time steps has a
higher hardness score and is harder to reconstruct formod-
els.
Tabular Data
For a sample 𝐱 ∈ ℝ𝑑 in a tabular dataset, we simply use
the mean of each dimension as the null value:

Null(𝐱)𝑑 =
∑𝑛

𝑗=1 𝐱
(𝑗)
𝑑

𝑛 , (5)

where 𝑛 is the number of samples. Essentially, due to the
absence of additional structure in such data, we consider
the mean of the data as a simple default prediction, which
is our null model.

3.3 Empirical Observations: Hardness Bias
In this section, we conduct empirical experiments to show
the existence and the effect of the ‘hardness bias’, i.e. a ten-
dency to assign higher anomaly scores to samples of higher
hardness, regardless of whether they are normal or anoma-
lous.
Specifically, we train an autoencoder (AE) model on the

T-shirt class from Fashion-MNIST [Xiao et al., 2017].
The anomalies are from the other nine classes. Firstly,
we show the false negative and false positive samples with
their average hardness values in Figure 2. We observe
that clothes detected as false negatives belong to various
anomalous classes, yet they are similarly plain in design.
This plainness is seen in their low hardness scores as well
as their low anomaly scores. Meanwhile the false positives

2For pixel values outside the borders of the image, we fill them
in by padding using the bordering pixels. The same approach is
used for time series data.



0.1 0.2 0.3 0.4
hardness

0.05

0.10

0.15

re
co

ns
tru

ct
io

n 
er

ro
r

0.1 0.2 0.3 0.4 0.5
hardness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
co

ns
tru

ct
io

n 
er

ro
r

False Positives

abnormal
normal

0% 25% 50% 75% 100%
Hardness Percentile(%)

0

5

10

15

Fa
lse

 P
os

tiv
e 

Ra
tio

(%
)

0.05 0.12 0.99

18.82

Figure 3: Left: The positive correlation between hardness and
reconstruction error with unequal spread(variance) across the
hardness values for normal data. Middle: The false positives
given the 95% percentile threshold. Right: Hardness Bias: the
highly imbalanced false positive ratios across the hardness val-
ues.

are all normal samples (T-shirts) with complex designs and
patterns, and this results in high hardness scores and high
reconstruction errors.
In Figure 3, we plot the reconstruction error against

hardness of each normal and anomalous sample. From the
figure, we observe that:
1. There is a positive correlation between hardness and

reconstruction error.
2. There is unequal variance of reconstruction error

across the range of hardness values, known as het-
eroscedasticity in the statistical literature.

3. The higher reconstruction error of the harder normal
samples encourages false positives, and conversely
less hard anomalies encourages false negatives.

4. This bias results in highly imbalanced false positive
rates across hardness scores.

In the appendix, we show the Pearson’s Correlation Co-
efficents between hardness and reconstruction error on
various models for all datasets including tabular, time-
series and image datasets. The result shows strong positive
correlation especially for time-series and image datasets.
Given our definitions of hardness, the empirical result

shows that an autoencodermodel tends to assign higher re-
construction error to samples with higher hardness, which
indicates the ‘hardness bias’ in these anomaly scoring
models. This can lead to high false positives among nor-
mal data with high hardness, thus decreasing detection ac-
curacy.

3.4 CADET: Calibrated Anomaly Detection
Motivation
So far, we have observed the hardness bias, whereby harder
samples tend to receive higher reconstruction errors, lead-
ing to false positives. Our calibration framework aims
to mitigate this problem by calibrating or ‘adjusting’ the
scores, to adjust for the influence of hardness. Intuitively,
we do this by conditioning on hardness: that is, evaluating
a sample 𝐱 with respect to the distribution of error condi-
tional on hardness, ℙ(Err(𝐱) |𝐻(𝐱)).
The idea of our calibration is illustrated in Figure 1.

Before calibration (Figure 1, left), the distribution of re-
construction errors varies significantly with hardness, and
therefore the harder samples are more likely to be false

Conditionally Calibrated Score

Hardness

Reconstruction ErrorInput Data

Trained Model

Calibrated Score

Hardness Prior Score

M

Err(x) − q̂1−ε(H(x))

σ̂(H(x))
x

π(H(x))H(x)

s(x)

Err(x)

Figure 4: Method overview: our framework CADET calibrates
the anomaly score from an existing model 𝑀. Calibration steps
are in green.

positives. Our approach (right) calibrates the scores by
mapping them into a consistent distribution that can be
more fairly compared across different hardness values,
leading to more accurate predictions and more meaning-
ful anomaly scores.
Overview
Figure 4 shows the overall framework for our approach.
A key design choice of our framework is its ‘plug-in’ na-
ture, allowing for flexibility and efficiency by plugging in
any trained anomaly detection model 𝑀 ∶ 𝒳 → ℝ into
our framework. The reconstruction error Err(𝐱) is com-
puted by the deep model 𝑀. Our calibration framework
first computes the sample hardness 𝐻(𝐱), then uses it to
calibrate the errors, i.e., adjust them for their sample hard-
ness.
Calibration Approach
Let our training samples be 𝐱1,⋯ , 𝐱𝑛 ∈ 𝐗train. As input to
our approach, wehave our trained plug-inmodel𝑀 ∶ 𝒳 →
ℝ, using which we compute the plug-in model’s errors:

𝑒𝑖 ∶= Err(𝐱𝑖) = ‖𝐱𝑖 −𝑀(𝐱𝑖)‖, for 𝑖 = 1,⋯ , 𝑛 (6)
To start the calibration process, we compute hardness val-
ues based on the null models defined in Eq. (3), (4) and (5)
depending on the data type:

ℎ𝑖 ∶= 𝐻(𝐱𝑖) = ‖𝐱𝑖 − Null(𝐱𝑖)‖, for 𝑖 = 1,⋯ , 𝑛 (7)
In general, our main idea is to learn the conditional

distribution of error given hardness,ℙ(Err(𝐱) |𝐻(𝐱)), for
normal data. At the test time, we will compare the empiri-
cal errors of test samples to the learned conditional distri-
bution, to adjust for the effect of hardness.
To capture this conditional distribution, we first fit the

conditional quantile �̂�1−𝜀(ℎ) of error 𝑒𝑖 , which fits the
(1 − 𝜀) quantiles of the error conditioning on hardness ℎ
for training set data (thus, the fitted �̂�1−𝜀 is a function with
input ℎ):
�̂�1−𝜀(ℎ) ∶= CondQuantile1−𝜀({(𝑒𝑖 , ℎ𝑖), for 𝑖 = 1,⋯ , 𝑛})

(8)

To obtain �̂�1−𝜀(ℎ), any conditional quantile estima-
tor(CondQuantile) could be used; for a simple, efficient
and non-parametric approach, we use B-splines[Bartels et
al., 1995].
�̂�1−𝜀(ℎ) is an estimate of the ‘baseline’ level of error

given hardness level ℎ for normal data. However, recall



that in our empirical observations in Section 3.3 and Fig-
ure 3(left), we observed that as hardness increases, the
mean of error values increased with unequal variance or
spread. This suggests that in addition to fitting the con-
ditional quantile �̂�1−𝜀(ℎ), we should also fit an estimate of
the conditional spread �̂�(ℎ), which can be any estima-
tor of the spread of the error distribution at hardness level
ℎ. In our case, we use the conditional inter-quartile range
(IQR): the IQR is a standard measure defined as the dif-
ference between the 75% and 25% quantiles of the distri-
bution, and provides a robust measure of the distribution
spread. Hence, we fit two additional conditional quantiles
at the 0.75 and 0.25 levels and take their difference:

�̂�(ℎ) ∶= �̂�0.75(ℎ) − �̂�0.25(ℎ) (9)

Next, we define our calibrated anomaly score. Consider
a (training or test) sample 𝐱, with hardness 𝐻(𝐱). Start-
ing with its (uncalibrated) error 𝖤𝗋𝗋(𝐱), we calibrate this
by subtracting the conditional quantile �̂�1−𝜀(𝐻(𝐱)) and di-
viding the result by the conditional spread �̂�(𝐻(𝐱)), giving
the first term in Eq. (10).
Considering the intrinsic imbalanced distribution of

hardness values, we introduce the second term 𝜋(𝐻(𝐱))
in Eq. (10), a hardness prior score, which captures the
normal distribution of hardness values 𝐻(𝐱) in the train-
ing set: for simplicity, we fit a Gaussian to the hardness
values in the training set. Then, given the sample 𝐱, we
add the absolute value of its z-score (i.e., no. of standard
deviations away from the mean) of this Gaussian (denoted
𝜋(𝐻(𝐱))) as part of the anomaly score, along with a weight
hyperparameter 𝜆 > 0 to adjust its scale relative to the first
term.
Definition 3.1 (Calibrated Anomaly Score). Given a
(training or test) sample 𝐱 ∈ 𝒳, its calibrated anomalous-
ness score is:

𝑠(𝐱) ∶= 𝖤𝗋𝗋(𝐱) − �̂�1−𝜀(𝐻(𝐱))
�̂�(𝐻(𝐱))

+ 𝜆 ⋅ 𝜋(𝐻(𝐱)) (10)

Calibrated Decision Rule
To provide a basis for decision making in real-world appli-
cations, our decision rule 𝐷𝜀 outputs a binary decision of
1 if the point is an anomaly, and 0 otherwise. Since false
positives are often costly, 𝐷𝜀 allows for a user-given proba-
bilistic threshold of 𝜀, designating that its false positive rate
should be bounded by 𝜀.
Our approach for obtaining this guarantee is based on

conformal prediction [Vovk et al., 2005], a simple and
model-agnostic statistical approach for obtaining confi-
dence guarantees in finite-sample and distribution-free
settings. This framework relies on conformity scores quan-
tifying the error made for a given input - in our case, we
consider the pairs (𝐻(𝐱),Err(𝐱)), and the conformity score
is the calibrated anomaly score 𝑠(𝐱) in Definition 3.1.
To apply this framework, we define a calibration set𝐗cal,

which can be either a validation set separate from the train-
ing data, or (if this is unavailable) the training set. Using a
validation set allows for theoretical guarantees (Theorem
1). However, we want our framework to be usable even

when 𝑀 is pre-trained; in this case, the full training set
is often used for training without a separate validation set
available. For this case, we show in our experiments that
even using the training set as 𝐗cal can still provide well-
calibrated decision rules in practice.
Let 𝑚 be the number of samples in 𝐗cal. We sort the

values {𝑠(𝐱) ∶ 𝐱 ∈ 𝐗cal}, and define �̂�1−𝜀 as the ⌈(𝑚 +
1)(1 − 𝜀)⌉th smallest value in this set. Then, the decision
rule 𝐷𝜀(𝐱) can be defined by treating �̂�1−𝜀 as a threshold:

𝐷𝜀(𝐱) = {1 if 𝑠(𝐱) > �̂�1−𝜀
0 otherwise (11)

Algorithm 1 summarizes our approach.

Algorithm 1: Cadet: Calibrated Anomaly Detec-
tion
Input : Training set 𝐗train, Calibration set 𝐗cal, Test set 𝐗test, Threshold 𝜀,

Trained plug-in model𝑀, Prior weight 𝜆 > 0
Output: Anomalousness score 𝑠(𝐱) and decision 𝐷𝜀(𝐱) ∈ {0, 1}

1 Compute errors: 𝑒𝑖 = Err(𝐱𝑖) for 𝐱𝑖 ∈ 𝐗train ⊳Using Eq. (6)
2 Compute hardness: ℎ𝑖 = 𝐻(𝐱𝑖) for 𝐱𝑖 ∈ 𝐗train ⊳Using Eq. (7)
3 Fit conditional quantile �̂�1−𝜀(ℎ) and spread �̂�(ℎ) ⊳Using Eq. (8), (9)
4 Calibrated scores: 𝑠(𝐱) ∶= 𝖤𝗋𝗋(𝐱)−�̂�1−𝜀 (𝐻(𝐱))

�̂�(𝐻(𝐱))
+ 𝜆 ⋅ 𝜋(𝐻(𝐱)) for 𝐱 ∈ 𝐗cal ⊳Def.

3.1
5 Threshold: �̂�1−𝜀 ∶= ⌈(𝑚 + 1)(1 − 𝜀)⌉th smallest value in {𝑠(𝐱) ∶ 𝐱 ∈ 𝐗cal}
6 Apply 𝜀-level decision rule on 𝐱 in 𝐗test :

7 𝐷𝜀(𝐱) = {1 if 𝑠(𝐱) > �̂�1−𝜀
0 otherwise ⊳Using Eq. (11)

False Positive Guarantee
This conformal prediction framework allows us to obtain
guarantees on the false positive rate of this decision proce-
dure.
Theorem 1 (Bound of False Positive Probability). Given
the decision rule 𝐷𝜀 and a (non-anomalous) test sample 𝐱,
the false positive probability is bounded as:

𝜀 − 1
𝑚 + 1 < ℙ(𝐷𝜀(𝐱) = 1) < 𝜀 (12)

where the probability is taken over the randomness in 𝐱 and
the calibration data �̃�1,⋯ , �̃�𝑚 ∈ 𝐗cal, where we use a vali-
dation set as calibration data.

Proof. Our proof follows the standard techniques used in
the conformal literature [Vovk et al., 2005; Romano et al.,
2020], particularly, the use of exchangeability. The full
proof can be found in our Supplementary Material.

4 Experiments
We conduct experiments to answer the following research
questions:
• RQ1 (Generality & Efficiency): Can our calibration
method improve the accuracy of different pre-trained
deep anomaly detection techniques? How efficient is
the calibration method?

• RQ2 (Accuracy & Ablation Study): Does our
method outperform baseline methods in accuracy of
anomaly detection in different datasets?



AE VAE DAE RealNVP
Datasets Base CADET Base CADET Base CADET Base CADET

OPTDIGITS 0.957 0.971 0.872 0.863 0.959 0.969 0.916 0.921
PENDIGTIS 0.972 0.978 0.923 0.956 0.991 0.994 0.995 0.996
SATELLITE 0.845 0.887 0.816 0.859 0.838 0.882 0.832 0.881
SATIMAGE-2 0.996 0.998 1.000 1.000 0.997 1.000 0.999 1.000
VERTEBRAL 0.595 0.630 0.482 0.624 0.645 0.632 0.649 0.673
MSL 0.594 0.641 0.537 0.633 0.593 0.637 0.589 0.632
SMAP 0.597 0.654 0.581 0.653 0.592 0.645 0.578 0.630
MNIST 0.958 0.984 0.930 0.964 0.927 0.985 0.531 0.732
F-MNIST 0.919 0.944 0.899 0.913 0.887 0.924 0.639 0.726

Table 1: Performance (AUC) for the base models and CADET

• RQ3 (Probabilistic Guarantees): Can our method
give an approximate false positive guarantee in
anomaly detection?

4.1 Experimental Setup
The experiments are conducted for AE, VAE and other
variantmodels on publicly available image, time series and
tabular datasets. We use Area Under Curve (AUC) met-
ric for evaluation to avoid threshold setting. The train-test
split settings are the same for the baselines and our meth-
ods.
Full details about datasets, baseline settings, model ar-

chitectures, hyperparameters, ablation study, etc. can be
found in our Supplementary Material.

4.2 RQ1. Generality & Efficiency
To evaluate the generality of CADET, we compare the per-
formance before and afterCADET calibration on four types
of models and different datasets in Table 1. CADET im-
proves the accuracy in almost all cases, often substantially.
Besides, all these improvements come at very low com-

putational cost: as presented in our Supplementary Mate-
rial, the longest running time across all datasets andmeth-
ods was 1.31s for both the hardness and calibration steps.

4.3 RQ2. Accuracy & Ablation Study
In Table 2, we show the anomaly detection accuracy in
terms of AUC score, of our CADET method on Autoen-
coder (AE) and the baselines, on the benchmark datasets.
The results show that CADET outperforms all tested base-
lines in almost all cases.
In the appendix, we perform an ablation study to

show the effect of each component of CADET separately:
CADET with only hardness prior scores, CADET without
the prior, and CADET.We find that only using prior scores
performs worse than the basemodel for all datasets, which
verifies the effectiveness of calibration. Additionally, it
shows that CADET without prior scores can achieve fairly
similar performance with the complete CADET for time-
series, image data and most tabular data. These findings
show that calibration is the essential component of our
method, while the prior is auxiliary.

4.4 RQ3. Probabilistic Guarantees
To study the effectiveness of our decision rule and our
method atmitigating hardness bias, we show the calibrated

Datasets PCA IForest OCSVM DAGMM RAPP CADETAE
OPTDIGITS 0.592 0.813 0.588 0.969 0.895 0.971
PENDIGITS 0.951 0.975 0.954 0.963 0.966 0.978
SATELLITE 0.657 0.774 0.664 0.787 0.851 0.887
SATIMAGE-2 0.998 0.999 1.000 0.979 0.999 0.998
VERTEBRAL 0.542 0.494 0.552 0.460 0.506 0.630

MSL 0.612 0.572 0.628 0.598 0.635 0.641
SMAP 0.622 0.580 0.642 0.548 0.643 0.654

MNIST 0.885 0.855 0.887 0.798 0.979 0.984
F-MNIST 0.906 0.919 0.894 0.854 0.933 0.944

Table 2: Performance (AUC) for baseline methods and CADET
applied on Autoencoder (AE).
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Figure 5: Left: The calibrated scores versus hardness values.
Right: False Positive Rate (%) comparison between reconstruc-
tion error and calibrated score. The 1st hardness range (0 − 25%)
has samples in the lowest quarter of hardness values, etc. Both
methods use probabilistic threshold of 𝜖 = 5% as decision rule in
Eq. (11).

scores and compare the false positive rates between un-
calibrated reconstruction error and calibrated scores under
our decision rule in Eq. (11) with 𝜖 = 5% on F-MNIST.
Figure 5 (left) shows that the previously observed posi-

tive correlation between hardness and anomaly score has
been removed by calibration. This results in a more bal-
anced distribution of scores across hardness values, as
compared to reconstruction error. Figure 5 (right) shows
that our calibrated decision rule has a balanced 5% false
positive rate across different hardness ranges, as compared
to the extremely unbalanced false positive rate of recon-
struction error.

5 Conclusion
In our work, we firstly show the hardness bias in existing
anomaly detection models, where the models can assign
higher anomaly scores to samples which are intrinsically
harder to model. This bias leads to imbalanced false posi-
tives and accuracy degradation in practice. Therefore, we
introduce the CADET framework to calibrate the original
anomaly scores to adjust the effect of hardness bias in a
post-hoc way. Thanks to the post-hoc property, the frame-
work can be flexibly applied on top of the anomaly detec-
tion module with very low computational cost. The exper-
iments show that CADET can effectively improve perfor-
mance on multiple data modalities, and with four types of
deep learningmodels. Bymitigating hardness bias through
calibration, CADET also providesmore balanced false pos-
itive rates across hardness values compared to the original
anomaly scores.
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