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ABSTRACT
Recent efforts in fake news detection have witnessed a surge of in-

terest in using graph neural networks (GNNs) to exploit rich social

context. Existing studies generally leverage fixed graph structures,

assuming that the graphs accurately represent the related social

engagements. However, edge noise remains a critical challenge in

real-world graphs, as training on suboptimal structures can severely

limit the expressiveness of GNNs. Despite initial efforts in graph

structure learning (GSL), prior works often leverage node features

to update edge weights, resulting in heavy computational costs that

hinder the methods’ applicability to large-scale social graphs. In

this work, we approach the fake news detection problem with a

novel aspect of social graph refinement. We find that the degrees
of news article nodes exhibit distinctive patterns, which are in-

dicative of news veracity. Guided by this, we propose DECOR, a

novel application of Degree-Corrected Stochastic Blockmodels to

the fake news detection problem. Specifically, we encapsulate our

empirical observations into a lightweight social graph refinement

component that iteratively updates the edge weights via a learnable

degree correction mask, which allows for joint optimization with

a GNN-based detector. Extensive experiments on two real-world

benchmarks validate the effectiveness and efficiency of DECOR.
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1 INTRODUCTION
Automated detection of fake news stories containing intentionally

distorted facts is a major focus of public discourse and scientific

research [4, 5, 15, 30, 35]. Drawing inspiration from the expressive
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Bush has died at the age of 94, 

spokesman said in a statement 

on Sunday afternoon … 

(published on July 1, 2018 by a

hoax news site).

Label: FAKE
# User Engagements: 311    

WASHINGTON – The 

Republican National 

Committee announced a new 

web video today on President 

Obama’s health care taxes …
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Figure 1: A motivating example for social graph refinement.
Darker spots represent a larger number of common readers
between two news articles. Weights are clipped at 30 for a
clear visualization.

Graph Neural Networks (GNNs) [14, 19, 46], a substantial body of

research incorporates graphs with rich social context [22, 26, 37] to

encode the news dissemination patterns and user responses. Despite

varying choices of feature types and GNN backbones, existing

approaches are relatively consistent in the design of social graphs.

More specifically, the graphs typically contain social users and

news articles, which allow GNNs to leverage the relations between

structural patterns and news veracity (e.g., closely connected nodes

tend to have similar preferences or veracity-related properties). This

facilitates the aggregation and propagation of crowdwisdom among

connected articles and users, yielding more accurate predictions.

Therefore, existing works typically consider social graphs as a high
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fidelity representation of the social context, the structure of which

is kept unchanged throughout model training.

However, we find that noisy edges remain an inevitable challenge

for learning on social graphs. A prominent cause is that influential

news articles tend to share a large number of common readers

(i.e. social users), regardless of their veracity labels. In Figure 1,

we illustrate one such case via visualizing the adjacency matrix

of a graph constructed with news articles, termed as the news

engagement graph (detailed formulation relegated to Section 3.2).

Here, the edge weights are positively correlated with the number of

common readers, and larger edge weights imply closer connections

between news articles. Figure 1 shows that the largest weights are

assigned to the diagonal, and areas representing real news pairs

and fake news pairs are also darker. This is expected, given the

self-loops and frequent interactions within groups of real news and

fake news spreaders. However, the figure also shows scattered dark

spots representing noisy edges between real news and fake news.

We observe that edge noise is degree-related, in that large edge

weights are often distributed along certain rows and columns.

Noisy edges severely undermine the effectiveness of GNNs, as

the message passing mechanism [13] propagates noise and con-

taminates node representations. However, little effort has been

made to mitigate this issue in the fake news detection scenario. De-

spite preliminary efforts of graph structure learning (GSL) methods

in denoising edges for real-world graphs (e.g. citation networks)

[6, 16], existing GSL methods cannot be readily applied to fake

news detection, as they generally leverage pairwise node feature

similarity to guide edge weight updates. Given the large scale of so-

cial graphs, similarity-guided GSL becomes less feasible and raises

critical deployment challenges.

In this work, we investigate the fake news detection problem

from a novel aspect of social graph refinement. Given a set of

news articles, we construct and refine a news engagement graph

that connects the articles with common readers. Guided by our ob-

servation of degree-related edge noise, we explore veracity-related

degree patterns on the news readership graph, and make two key

findings: (1) nodes representing fake news and real news exhibit

distinctive degree distributions; and (2) grouping edges by the ve-

racity labels of the articles they connect, different edge groups

demonstrate a clear difference regarding the relationship between

degrees and the number of common readers.

Motivated by our empirical findings on veracity-related degree

and co-engagement patterns, we present Degree-Corrected So-

cial Graph Refinement (DECOR), a novel social graph refinement

framework for fake news detection. DECOR is based on a flexible

extension of the Degree-Corrected Stochastic Blockmodel (DCSBM)

[17], a graph generative model that allows us to simultaneously

consider the effects of degree and node labels, in a tractable proba-

bilistic manner. DECOR suppresses noise in the news engagement

graph by downweighting the noisy edges, specifically via learning

a social degree correction mask based on a theoretically motivated

likelihood ratio-based statistic under the DCSBM model, with a

nonlinear relaxation to improve the flexibility of the model. DECOR

utilizes the degree correction mask to adjust the edge weights of

the news engagement graph, which is then jointly optimized with

a GNN-based classifier to predict news veracity.

In summary, our contributions are as follows:

• Empirical Findings: We present two novel findings, on how

both degree and co-engagement closely relate to news veracity.

• Principled DCSBM-based GSL: Motivated by our empirical

findings, we propose DECOR, a GSL approach for reducing edge

noise, based on a theoretically motivated likelihood ratio-based
statistic under the DCSBM model, combined with a nonlinear

relaxation.

• Efficiency: Unlike existing GSL approaches, DECOR avoids us-

ing high dimensional features as input for GSL, and is also linear

in the number of edges, thus being 7.6 - 34.1 times faster than

existing GSL approaches.

• Effectiveness: DECOR improves F1 score by 4.55% and 2.51%

compared to the best baseline on two real-world fake news de-

tection benchmarks, consistently improves the performance of

multiple GNN baselines in a plug-and-play manner, and outper-

forms baselines under label scarcity.

2 RELATEDWORK
2.1 Fake News Detection
Fake news detection is commonly considered as a binary classifica-

tion problem, with the goal of accurately predicting a given news

article as real or fake. Among existing studies, content-based
methods extract semantic patterns from the news content using a

wide range of deep learning architectures that include RNNs [29]

and pre-trained language models (PLMs) [20, 28]. Some methods

also guide model prediction with auxiliary information including

knowledge bases [5, 10, 15, 45], evidence from external sources

[3, 34, 47], visual information [2, 32, 42, 51], and signals from the

news environment [33]. As fake news detection is often deeply

rooted in the social context, propagation-based methods incor-
porate various social features including user responses and opin-

ions [24, 30, 35, 37, 48, 49], user-user following relations [22], news

sources [26], and user history posts [9] to guide model prediction.

Despite the rich social information incorporated, little effort has

been made to explore direct relations between news articles and the

properties of veracity-related news-news connections. Moreover,

many methods are vulnerable to structural noise in social graphs,

as they typically adopt fixed graph structures during training.

2.2 Structure Learning for Robust GNNs
Graph Neural Networks (GNNs) have demonstrated impressive po-

tential in learning node and graph representations [14, 19, 25, 46].

Despite the prior success, extensive studies have demonstrated

that GNNs are highly vulnerable to adversarial attacks in terms

of structural noise [7, 41, 52]. To alleviate this issue, numerous

works have focused on learning optimized structures for real-world

graphs, specifically via edge denoising [6, 11, 16, 38, 44]. Motivated

by the observation that noisy edges connect nodes with dissimilar

features [11], existing methods are generally guided by feature sim-

ilarity measures. For instance, [44] conducts edge pruning based

on the Jaccard similarity between paired node features, Pro-GNN

[16] employs the feature smoothness regularization alongside low-

rank constraints, and RS-GNN [6] utilizes node feature similarity

to guide the link prediction process. Nevertheless, graph structure

learning (GSL) remains underexplored under the social context of
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fake news detection. Existing GSL methods are not readily appli-

cable to this task, given the high computational costs incurred in

computing pairwise similarity measures between high-dimensional

news article representations on large-scale social graphs. While

initial efforts have been made in conditioning the edge metric with

node degrees for coordination detection [50], the fixed adjustment

formula adopted by existing work cannot fully capture the com-

plex relations between degree-related properties, which may vary

greatly across datasets. To the best of our knowledge, we propose

the first learnable framework for social graph refinement, which

leverages low-dimensional degree-related properties to flexibly ad-

just the edge weights of a news engagement graph for enhanced

fake news detection.

3 PRELIMINARY ANALYSIS
In this section, we formally define the fake news detection problem,

establish a social context graph that encodes user engagements in

disseminating news articles, and conduct preliminary analysis to

explore the veracity-related structural patterns.

3.1 Problem Formulation
Let D be a fake news detection dataset containing 𝑁 samples. In

the social media setting, we define the dataset as

D = {P,U,R},
where P = {𝑝1, 𝑝2, . . . , 𝑝𝑁 } is a set of questionable news articles,
U = {𝑢1, 𝑢2, . . . } is a set of related social users who have spread

at least one article in P via reposting on social media. R represents

the set of social user engagements, in which 𝑟 ∈ R is defined as

a triple {(𝑢, 𝑝, 𝑘) |𝑢 ∈ U, 𝑝 ∈ P} (i.e. user 𝑢 has given 𝑘 responses

to the news article 𝑝 in terms of reposts). In line with most existing

studies, we treat fake news detection on social media as a binary

classification problem. Specifically,P is split into training setP𝑡𝑟𝑎𝑖𝑛

and test set P𝑡𝑒𝑠𝑡 . Article 𝑝 ∈ P𝑡𝑟𝑎𝑖𝑛 is associated with a ground-

truth label 𝑦 of 1 if 𝑝 is fake, and 0 otherwise. We formulate the

problem as follows:

Problem 1 (Fake News Detection on Social Media). Given
a news dataset D = {P,U,R} and ground-truth training labels
Y𝑡𝑟𝑎𝑖𝑛 , the goal is to learn a classifier 𝑓 that, given test articles P𝑡𝑒𝑠𝑡 ,
is able to predict the corresponding veracity labels Y𝑡𝑒𝑠𝑡 .

3.2 News Engagement Graph
The positive correlation between social user preferences and the

user’s news consumption habits has been acknowledged by prior re-

search [1]. Specifically, social media creates an echo chamber, where
individual beliefs can be continuously reinforced by communication

and repetition within like-minded social groups [12].

Motivated by this, we propose to capture the news veracity

signals embedded in social user engagements. To distill a compre-

hensive representation of user preferences, we set a threshold to

filter the users with less than 3 engagements with news articles,

and focus on a subsetU𝐴 ⊂ U containing active users. Specifically,

we construct a user engagement matrix E ∈ R |U𝐴 |×𝑁
. Element E𝑖 𝑗

represents the number of interactions between user 𝑢𝑖 and news

article 𝑝 𝑗 , the value of which is retrieved from the corresponding

entry (𝑢𝑖 , 𝑝 𝑗 , 𝑘𝑖 𝑗 ) ∈ R.

Fake

Real

(a) PolitiFact

Fake

Real

(b) GossipCop

Figure 2: KDE plot of node degree distributions on the news
engagement graph.

Real-Real Fake-FakeReal-Fake

(a) PolitiFact

Real-Real Fake-FakeReal-Fake

(b) GossipCop

Figure 3: News co-engagement patterns of news article pairs.
Edges in G represent shared readership between articles, and
are grouped based on the articles’ veracity labels.

Given the news consumption patterns of active social users,

we further propose to link the news articles that attract similar

user groups via constructing an weighted undirected news engage-
ment graph G = {P, E}. The adjacency matrix A ∈ R𝑁×𝑁

of G is

formulated based on overlapping user engagement patterns in E,
specifically as:

A = E⊤E. (1)

Intuitively, element A𝑛𝑘 in A can be interpreted as the number

of 2-hop paths (i.e., news - user - news) between two news articles

𝑝𝑛 and 𝑝𝑘 . Hence, a larger A𝑛𝑘 value represents stronger common

interest between the reader groups of news article, implying shared

opinions or beliefs in the users’ news consumption preferences.

3.3 Empirical Observations
In this subsection, we conduct preliminary analysis on real-world

news to explore the veracity-related structural properties on the

news engagement graph.We observe that fake and real news exhibit

distinctive patterns in terms of weighted node degrees, motivated

by which we design a degree-based social graph refinement frame-

work to mitigate the edge noise issue in Section 4. Our analysis is

based on the FakeNewsNet [36] benchmark, which consists of the

PolitiFact and GossipCop datasets.

3.3.1 Degree-Veracity Correlations. We first explore how the de-

gree of a news article node is related to its veracity label. In other
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words, do fake news articles attract more or less user engage-
ments than real news?

Recall that we have a news engagement graph G = {P, E} with
adjacency matrix A. The weighted node degrees in A can be used to

measure the intensity of user engagements for each news article. In

Figure 2, we visualize the degree distributions of fake and real news

with a kernel distribution estimation (KDE) plot, which depicts the

node degrees with a continuous probability density curve. We make

the following observation:

Observation 1. On the news engagement graph, the degree distri-
butions of nodes representing fake and real news articles show a clear
difference. Note that different datasets can exhibit varying domain-
specific patterns; for instance, in the GossipCop dataset containing
celebrity news, real news tend to attract more engagements from active
social users. However, this pattern does not apply to the politics-related
PolitiFact dataset.

3.3.2 News Co-Engagement. Next, we explore the degree-related
properties of news article pairs connected by common readers (i.e.

active social users in U𝐴). Intuitively, given a pair of news articles

𝑝𝑖 and 𝑝 𝑗 that share at least 1 reader, the corresponding edge 𝑒𝑖 𝑗 ∈ E
in the news engagement graph can be divided into three groups

according to the veracity labels of 𝑝𝑖 and 𝑝 𝑗 : (1) real news pairs; (2)

real-fake pairs; and (3) fake news pairs.

To quantify the shared user engagements between news ar-

ticle nodes w.r.t. the corresponding degrees, we compute a “co-
engagement” score 𝐶𝑖 𝑗 for news articles 𝑝𝑖 and 𝑝 𝑗 , formulated as:

Definition 1 (News Co-Engagement).

𝐶𝑖 𝑗 = |U𝑖 ∩U𝑗 |,
whereU𝑖 ⊂ U andU𝑗 ⊂ U are the sets of social users that engage
with 𝑝𝑖 and 𝑝 𝑗 , respectively.

We investigate the following question: given an edge, are
there any associations between its group, and the news co-
engagement of the two nodes it connects? In Figure 3, we

bucketize the edges by the value of 𝑑𝑖 × 𝑑 𝑗 , and plot the news co-

engagement scores w.r.t. the edge groups. Note that here we adopt

the product of degrees to distinguish edges with high values for

both 𝑑𝑖 and 𝑑 𝑗 , and also motivated by our theoretical results in

Section 4.1. Across the buckets, we observe the following pattern

on news co-engagement:

Observation 2. Given the degrees, fake news pairs tend to have
higher 𝐶𝑖 𝑗 (i.e. more common users than expected given the degrees),
while real-fake pairs tend to have lower𝐶𝑖 𝑗 than both real news pairs
and fake news pairs.

Our two empirical observations provide distinctive degree-related

cues pertaining to nodes (i.e. news articles) and edges (i.e. user en-

gagements) on the news engagement graph (extended analysis and

discussion are relegated to Appendix A). These patterns can guide

a model in suppressing the noisy edges, as they can be leveraged

to identify which edges are more likely to connect news articles

of the same veracity. Meanwhile, we find that differences in the

degree distributions can be complex (e.g., as shown in Figure 2, fake

news attract more user engagements than real news in PolitiFact,

but less in GossipCop). This motivates our following degree-based

innovations for a learnable social graph refinement approach.

𝑪𝒊𝒋

𝒅𝒊 𝒅𝒋

Noisy 

Edge

Co-Engagement

News Engagement Graph

DECOR-Refined Graph

Down-

weighted

Degree Correction Mask  
Predictor  

GNN Detector

෨𝜙

Real / Fake

Figure 4: Overview of the proposed Degree-Corrected Social
Graph Refinement (DECOR) framework.

4 PROPOSED FRAMEWORK – DECOR
Motivated by our empirical findings on veracity-related degree

patterns, we propose the DECOR framework for degree-corrected

social graph refinement (overviewed in Figure 4). DECOR can be

considered as a novel extension of the Degree-Corrected Stochas-

tic Blockmodel (DCSBM) [17] to the fake news detection scenario,

which empowers fake news detectors with effective denoising of

user engagements. Given a pair of news articles connected by com-

mon users, we propose a social degree correction module to ad-

just the corresponding edge weight using degrees and the news

co-engagement. This module is jointly optimized with the GNN

classifier, which leverages the corrected edge weights and news

article features to predict the news veracity labels.

4.1 Connection with the DCSBM Model
In Section 3.3, we observed that degree patterns are closely related

to news veracity labels. Next, we formally demonstrate these con-

nections from a theoretical perspective based on the DCSBM model

[17], a generative model for graphs that derives edge placement

likelihoods in a degree-based manner. The benefit of DCSBM is that

it allows us to simultaneously model the effect of degree patterns
and class labels, which are of key interest, in a tractable probabilistic
way. Based on the DCSBM model, we will then theoretically derive

a principled likelihood ratio-based approach for graph structure

learning for the fake news detection application.

Framework. We first formulate the standard DCSBM under our

fake news detection scenario. Recall the news engagement graph

G = {P, E} formulated in Section 3.2, where |P | = 𝑁 . Each news

article node in G is associated with a class label from the label

space Z = {0, 1}. Consider a pair of news article nodes 𝑝𝑖 ∈ P
and 𝑝 𝑗 ∈ P with co-engagement 𝐶𝑖 𝑗 . The nodes have class labels

𝑧𝑖 ∈ Z and 𝑧 𝑗 ∈ Z, respectively. Recall that 𝐶𝑖 𝑗 is defined as the

number of common users between 𝑝𝑖 and 𝑝 𝑗 .
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Next, to formulate structure learning under the DCSBM model,

our basic intuition is that same-class edges (i.e., edges 𝑒𝑖 𝑗 where
𝑧𝑖 = 𝑧 𝑗 ) are more likely to be useful and informative than cross-
class edges (i.e., edges where 𝑧𝑖 ≠ 𝑧 𝑗 ), and hence, structure learning

should aim to give a higher weight to same-class edges. Intuitively,

cross-class edges tend to indicate noisy edges, as in the example

in Figure 1, where the co-engagement between them arises just by

chance. Moreover, since our main goal is to classify 𝑝𝑖 , identifying

edges where 𝑧𝑖 = 𝑧 𝑗 clearly provides highly useful information for

this task. Hence, our key idea is to perform structure learning by

deriving the same-class likelihood ratio:

Definition 2 (Same-class likelihood ratio). The same-class
likelihood ratio, i.e. the likelihood ratio for 𝑧𝑖 = 𝑧 𝑗 over 𝑧𝑖 ≠ 𝑧 𝑗 when
observing 𝐶𝑖 𝑗 edges between 𝑝𝑖 and 𝑝 𝑗 , is

𝐿𝑅𝑖 𝑗 :=
P(𝐶𝑖 𝑗 |𝑧𝑖 = 𝑧 𝑗 )
P(𝐶𝑖 𝑗 |𝑧𝑖 ≠ 𝑧 𝑗 )

. (2)

The higher this likelihood ratio, the more evidence the data

(specifically, 𝐶𝑖 𝑗 ) gives in favor of 𝑧𝑖 = 𝑧 𝑗 over 𝑧𝑖 ≠ 𝑧 𝑗 ; and hence,

structure learning should give a higher weight to such edges.

Derivation. Under the DCSBM model, the 𝐶𝑖 𝑗 edges between 𝑝𝑖
and 𝑝 𝑗 are independently Poisson distributed, i.e., 𝐶𝑖 𝑗 ∼ Poi(_𝑖 𝑗 ),
where _𝑖 𝑗 denotes the expected number of edges:

_𝑖 𝑗 =

{
𝛽𝑖𝛽 𝑗𝑝 if 𝑧𝑖 = 𝑧 𝑗

𝛽𝑖𝛽 𝑗𝑞 if 𝑧𝑖 ≠ 𝑧 𝑗
, (3)

where 𝛽𝑖 and 𝛽 𝑗 are the “degree correction parameters” that allow

us to generate nodes with different degrees. 𝑝 and 𝑞 are parameters

controlling the rate at which edges are generated under the same-

class and cross-class cases, respectively. Generally, we have 𝑝 > 𝑞,

i.e., same-class edges have a higher tendency to be generated.

The corresponding maximum likelihood values
ˆ𝛽𝑖 and ˆ𝛽 𝑗 for 𝛽𝑖

and 𝛽 𝑗 are given as

ˆ𝛽𝑖 =
𝑑𝑖

𝑚
, ˆ𝛽 𝑗 =

𝑑 𝑗

𝑚
, (4)

in the DCSBM model [17], where𝑚 = |E | denotes the number of

edges. 𝑑𝑖 and 𝑑 𝑗 respectively refer to the weighted degrees of nodes

𝑝𝑖 and 𝑝 𝑗 .

Since 𝐶𝑖 𝑗 ∼ Poi(_𝑖 𝑗 ), the likelihood ratio 𝐿𝑅𝑖 𝑗 for 𝑧𝑖 = 𝑧 𝑗 over

𝑧𝑖 ≠ 𝑧 𝑗 can be derived as:

𝐿𝑅𝑖 𝑗 =
P(𝐶𝑖 𝑗 |𝑧𝑖 = 𝑧 𝑗 )
P(𝐶𝑖 𝑗 |𝑧𝑖 ≠ 𝑧 𝑗 )

=
𝑒−𝛽𝑖𝛽 𝑗𝑝 (𝛽𝑖𝛽 𝑗𝑝)𝐶𝑖 𝑗

𝑒−𝛽𝑖𝛽 𝑗𝑞 (𝛽𝑖𝛽 𝑗𝑞)𝐶𝑖 𝑗

= 𝑒−𝛽𝑖𝛽 𝑗 (𝑝−𝑞) ( 𝑝
𝑞
)𝐶𝑖 𝑗 .

(5)

Substituting the
ˆ𝛽𝑖 and ˆ𝛽 𝑗 given in Eq.4 into Eq.5, we derive the

maximum likelihood estimate for 𝐿𝑅𝑖 𝑗 :

MLE(𝐿𝑅𝑖 𝑗 ) = 𝑒
− 𝑑𝑖𝑑𝑗

𝑚2
(𝑝−𝑞) ( 𝑝

𝑞
)𝐶𝑖 𝑗 . (6)

Treating 𝑚, 𝑝, 𝑞 as fixed (since they are shared by all nodes), we

thus see that the MLE is a function of 𝐶𝑖 𝑗 , 𝑑𝑖 and 𝑑 𝑗 : in particular,

it is a log-linear function of 𝐶𝑖 𝑗 and 𝑑𝑖𝑑 𝑗 :

MLE(𝐿𝑅𝑖 𝑗 ) = Φ(𝐶𝑖 𝑗 , 𝑑𝑖 , 𝑑 𝑗 ) := 𝑒
− 𝑑𝑖𝑑𝑗

𝑚2
(𝑝−𝑞) ( 𝑝

𝑞
)𝐶𝑖 𝑗

(7)

= exp

[(
𝐶𝑖 𝑗
𝑑𝑖𝑑 𝑗

)
·
(
log(𝑝) − log(𝑞)

−𝑝−𝑞
𝑚2

)]
(8)

Implications. We first note that Eq. 8 agrees with our empirical

finding in Observation 2: if we fix 𝑑𝑖𝑑 𝑗 in Eq. 8, then as long as

log(𝑝) − log(𝑞) > 0, we observe that higher 𝐶𝑖 𝑗 is associated with

a higher 𝐿𝑅𝑖 𝑗 , and thus a higher probability of same-class edges

(𝑧𝑖 = 𝑧 𝑗 ), agreeing with Figure 3 where the Real-Fake edges have

lowest 𝐶𝑖 𝑗 for a given 𝑑𝑖𝑑 𝑗 .

For structure learning purposes, we could simply useΦ(𝐶𝑖 𝑗 , 𝑑𝑖 , 𝑑 𝑗 ),
which we recall is an estimator for 𝐿𝑅𝑖 𝑗 =

P(𝐶𝑖 𝑗 |𝑧𝑖=𝑧 𝑗 )
P(𝐶𝑖 𝑗 |𝑧𝑖≠𝑧 𝑗 ) . However,

the standard DCSBM model is built upon relatively strong assump-

tions (e.g. pre-defined 𝑝 and 𝑞 values); for fitting real data, we would

like to relax these assumptions and allow the model to be flexibly

learned from data. The DCSBM model contains very few learnable

parameters, which is a fundamental limitation in adapting to the

complex degree-based patterns in the news engagement graph. This

motivates us to develop DECOR, a degree-based learnable social

graph refinement framework, which we will next describe in detail,

by relaxing the assumption of log-linearity: that is, instead of treat-

ing Φ(𝐶𝑖 𝑗 , 𝑑𝑖 , 𝑑 𝑗 ) as a fixed and log-linear function defined in Eq. 8,

we instead treat it as a learnable non-linear function Φ̃(𝐶𝑖 𝑗 , 𝑑𝑖 , 𝑑 𝑗 ) to
be updated jointly with the rest of the model, during the structure

learning process.

4.2 Social Degree Correction
As illustrated in Figure 1, the news engagement graph contains

structural noise. In light of our empirical findings on degree-veracity

relationships and the DCSBM framework, we propose to learn a

degree-corrected social graph that downweights the noisy edges to

eliminate their negative impacts and facilitate fake news detection

via GNN-based classifiers.

Recall that the type of an edge in the news engagement graph

(i.e. connecting new articles of same or different veracity) is char-

acterized by the co-engagement and degrees of the connected arti-

cles. Motivated by the DCSBM model’s degree-based probabilistic

derivation of edge placement likelihood, we propose to adjust edge

weights in the news engagement graph via learning a social degree
correction mask M ∈ R𝑁×𝑁

, where M𝑖 𝑗 in the interval (0, 1) repre-
sents the degree correction score for edge 𝑒𝑖 𝑗 between news article

nodes 𝑝𝑖 and 𝑝 𝑗 .

The value ofM𝑖 𝑗 is predicted given co-engagement𝐶𝑖 𝑗 of articles

𝑝𝑖 and 𝑝 𝑗 , and the articles’ weighted node degrees𝑑𝑖 and𝑑 𝑗 from the

news engagement graph. Specifically, we adopt a neural predictor

to obtain s𝑖 𝑗 ∈ R2, which contains two scores for edge preservation

and elimination, respectively:

s𝑖 𝑗 = Φ̃(𝐶𝑖 𝑗 , 𝑑𝑖 , 𝑑 𝑗 ) . (9)

Φ̃(·) is a MLP-based architecture, and can be considered as a learn-

able extension of Eq.8 in the DCSBM model.

The scores in s𝑖 𝑗 are normalized via the softmax function. To

preserve computational efficiency, we design the social degree cor-

rection process as pruning. In other words, we conduct Eq.9 on all
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the news pairs connected by common users to obtain the corre-

sponding degree correction scores:

M𝑖 𝑗 =

{
𝑣𝑖 𝑗 if 𝐶𝑖 𝑗 ≠ 0

0 else

. (10)

where 𝑣𝑖 𝑗 denotes the softmax-normalized score in s𝑖 𝑗 that corre-
lates with edge preservation.

Given the co-engagement matrix C of news engagement graph

G, we utilize M to obtain a degree-corrected adjacency matrix A𝑐 :

Â = C ·M + I (11)

A𝑐 = D− 1

2 ÂD− 1

2 , (12)

where I represents an identitymatrix of size𝑁 , andD is the diagonal

matrix of degrees for Â.
Through the above operations, noisy edges in the news engage-

ment graph are assigned smaller weights, as Φ̃(·) in Eq.9 leverages

degree-based properties to predict a low degree correction score.

4.3 Prediction on Degree-Corrected Graph
With the degree-corrected adjacencymatrixA𝑐 , we can leverage the

powerful GNN architectures (e.g. GCN [19], GIN [46] and Graph-

Conv [25]) to predict the veracity labels of article nodes in the

degree-corrected news engagement graph.

Central to GNNs is the message-passing mechanism [13], which

follows an iterative scheme of updating node representations based

on information aggregation among the node’s neighborhood. For a

news article 𝑝 ∈ P, the initial news article feature h(0)𝑝 is set as the

news content representation x𝑝 :

h(0)𝑝 = x𝑝 , (13)

where x𝑝 is extracted from news article 𝑝 via a pre-trained language

model M with frozen parameters. At the 𝑘-th layer of a GNN, the

news article representation h(𝑘 )𝑝 is obtained via:

m(𝑘 )
𝑝 = AGGREGATE(𝑘 )

({
h(𝑘−1)𝑢 ,∀𝑢 ∈ N (𝑝)

})
(14)

h(𝑘 )𝑝 = COMBINE(𝑘 )
(
h(𝑘−1)𝑝 ,m(𝑘 )

𝑝

)
, (15)

where N(𝑝) denotes the neighbors of 𝑝 on the news engagement

graph, and m(𝑘 )
𝑝 is the aggregated information from N(𝑝).

Let h𝑝 ∈ R2 be the output of the GNN-based classifier for node 𝑝 .
Then, the news veracity label of 𝑝 is predicted as ỹ𝑝 = softmax(h𝑝 ).
During training, we minimize the following cross entropy loss:

L =
∑︁

𝑝∈P𝑡𝑟𝑎𝑖𝑛

CELoss
(
ỹ𝑝 , y𝑝

)
. (16)

The degree correction mask predictor Φ̃(·) is jointly optimized

with the GNN-based classifier. DECOR utilizes low-dimensional

degree-related properties to guide the social degree correction op-

erations, which facilitates edge denoising on G without loss of

computational efficiency.

Table 1: Dataset statistics.

Dataset PolitiFact GossipCop

# News Articles 497 16,599

# Real News 225 12,641

# Fake News 272 3,958

# User-News Engagements 227,184 963,009

# Distinct Users 143,481 202,907

5 EXPERIMENTS
In this section, we empirically evaluate DECOR to answer the fol-

lowing five research questions:

• Fake News Detection Performance (Section 5.2): How well

does DECOR perform compared with competitive baselines?

• Ablation Study (Section 5.3): How effective are co-engagement

and degree patterns, respectively, in improving the fake news

detection performance of DECOR?

• Limited Training Data (Section 5.4): Does DECOR perform

well under label sparsity?

• Computational Efficiency (Section 5.5): How efficient is DECOR

compared with existing GSL methods?

• Case Study (Section 5.6): Does DECOR downweight the noisy

edges connecting influential real and fake news articles?

5.1 Experimental Setup
5.1.1 Datasets. We evaluate DECOR on the public benchmark Fak-

eNewsNet [36], which consists of two real-world datasets: PolitiFact

and GossipCop. Both datasets contain news articles annotated by

leading fact-checking websites and the articles’ related social user

engagements from Twitter. The descriptive statistics of the datasets

are summarized in Table 1.

To simulate the real-world scenarios, we split the news samples

following a temporal order. Specifically, the most recent 20% real

and fake news instances constitute the test set, and the remaining

80% instances posted earlier serve as the training set.

5.1.2 Baselines. We benchmark DECOR against twelve representa-

tive baseline methods, which can be categorized into the following

three groups by model architecture:

News content based methods (G1) leverage the semantic fea-

tures in the news articles. Specifically, dEFEND\c is a content-based
variant of dEFEND [35] without incorporating user comment texts,

which utilizes a hierarchical network with the co-attention mech-

anism. SAFE\v is a content-based variant of SAFE [51] without

incorporating visual information from images, which leverages a

CNN-based fake news detector. SentGCN [39] models each news

article as a graph of sentences, and utilize the GCN [19] architecture

for news veracity prediction. BERT [8] and DistilBERT [31] (with

model names BERT-base and DistilBERT-base, respectively) are

large pre-trained bidirectional Transformers, which we fine-tune

to the downstream task of fake news detection.

Social graph based methods (G2) encode the social context
into graph structures, and leverage GNNs to learn news article

representations. Specifically, GCNFN [24] leverages user responses

and user following relations to construct a propagation tree for



DECOR: Degree-Corrected Social Graph Refinement for Fake News Detection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Performance comparison between DECOR and baselines (G1: Content-based, G2: Graph-based, and G3: GSL-based). Bold
and underline indicates the best overall and baseline performance, respectively. ∗ denotes that DECOR performs significantly
better than the corresponding GNN backbone at 𝑝 < 0.01 level using the Wilcoxon signed-rank test.

Method PolitiFact GossipCop

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

G1

dEFEND\c [35] 0.8207 0.8226 0.8198 0.8195 0.7998 0.7251 0.6787 0.6936

SAFE\v [51] 0.8146 0.8185 0.8114 0.8121 0.7920 0.7090 0.6739 0.6866

SentGCN [39] 0.8404 0.8567 0.8446 0.8385 0.7935 0.7130 0.6797 0.6913

BERT [8] 0.8586 0.8692 0.8584 0.8564 0.8498 0.8084 0.7480 0.7703

DistilBERT [31] 0.8419 0.8518 0.8426 0.8403 0.8349 0.7765 0.7422 0.7563

G2

GCNFN [24] 0.8687 0.8694 0.8680 0.8674 0.8520 0.9016 0.6950 0.7354

FANG [26] 0.8601 0.8625 0.8647 0.8599 0.8715 0.8835 0.7506 0.7897

GCN [19] 0.8965 0.9027 0.9034 0.8964 0.9146 0.9370 0.8281 0.8668

GIN [46] 0.9025 0.9037 0.9068 0.9024 0.9197 0.9308 0.8450 0.8780

GraphConv [25] 0.8990 0.9007 0.9037 0.8989 0.9150 0.9172 0.8426 0.8720

G3 Pro-GNN [16] 0.7747 0.7779 0.7690 0.7691

OOM

RS-GNN [6] 0.7439 0.7839 0.7253 0.7210

Ours
GCN w/ DECOR 0.9480∗ 0.9483∗ 0.9520∗ 0.9479∗ 0.9310

∗ 0.9377 0.8694
∗

0.8973
∗

GIN w/ DECOR 0.9399
∗

0.9398
∗

0.9433
∗

0.9398
∗ 0.9333∗ 0.9294 0.8828∗ 0.9031∗

GraphConv w/ DECOR 0.9379
∗

0.9376
∗

0.9412
∗

0.9377
∗

0.9259
∗

0.9130 0.8805
∗

0.8945
∗

each news article. FANG [26] establishes a comprehensive social

graph with users, news and sources, and learns the representations

with GraphSAGE [14]. We also apply three representative GNN

architectures on our proposed news engagement graph, namely

GCN [19], GIN [46], and GraphConv [25]. For a fair comparison,

we only implement the model components involving news articles,

social user identities, and user-news relations.

Graph Structure learning (GSL) methods (G3) aim to en-

hance representation via learning an optimized graph structure.

We implement two GSL methods that focus on edge denoising,

Pro-GNN [16] applies low-rank and sparsity properties to learn a

clean graph structure that is similar to the original graph. RS-GNN
[6] simultaneously learns a denoised graph and a robust GNN via

constructing a link predictor guided by node feature similarity.

5.1.3 Evaluation Metrics. Following prior works [35, 51], we adopt
four widely-used metrics to evaluate the performance of fake news

detection methods: Accuracy (Acc.), Precision (Prec.), Recall (Rec.)
and F1 Score (F1). In all experiments, we report the average metrics

across 20 different runs of each method.

5.1.4 Implementation Details. We implement our proposedDECOR

model and its variants based on PyTorch 1.10.0 with CUDA 11.1,

and train them on a server running Ubuntu 18.04 with NVIDIA RTX

3090 GPU and Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. To

construct DECOR’s news engagement graph, we select active social

users with least 3 reposts, and threshold a user’s maximum number

of interactions with each news article at 1% of the total number of

news articles. We extract 768-dimensional news article features via

a pre-trained BERT model with frozen parameters; specifically, we

utilize pre-trained weights from HuggingFace Transformers 4.13.0

[43] (model name: bert-base-uncased). The predictor Φ̃(·) for social
degree correction is a 2-layer MLP with hidden size 16 for PolitiFact

and 8 for GossipCop. The GNN architecture is set to 2 layers with

64 hidden dimensions. The model is trained for 800 epochs, and

model parameters are updated for via an Adam optimizer [18] with

learning rate 0.0005.

Technically, our framework is model-agnostic, which could co-

ordinate with various GNN models on the news engagement graph.

Here, we select three representative GNN architectures as back-

bones: GCN [19], GIN [46] and GraphConv [25]. For the imple-

mentation of baseline methods, we follow the architectures and

hyperparameter values suggested by their respective authors.

5.2 Performance Comparison
This subsection compares DECOR with various content-based,

graph-based and GSL baselines on fake news detection.

Table 2 shows that DECOR consistently outperforms the com-

petitive baseline methods by significant margins (𝑝 < 0.01). We

make the following observations: (1) Among the five content-based

methods (G1), pre-trained language models (PLMs) outperform the

“train-from-scratch” methods. The effectiveness of PLMs demon-

strates the benefits of pre-training on large-scale corpora, from

which the model obtains rich semantic knowledge. (2) Methods

that incorporate social graphs (G2) consistently outperforms the

content-based methods (G1). This signifies the importance of user

engagement patterns, and indicates that exploiting social context

is central to effective fake news detection. (3) Among the social

graph based methods (G2), methods that leverage our proposed

news engagement graph (GCN, GIN, GraphConv) outperformmeth-

ods that formulate both news and users as graph nodes (GCNFN

and FANG). Our graph formulation is superior, in that it focuses

solely on the co-engagement of social users; it facilitates direct

information propagation among articles with similar reader groups,
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(a) PolitiFact (b) GossipCop

Figure 5: Ablation study of DECOR.

Table 3: Model efficiency comparison on PolitiFact dataset.

Method # Params Runtime (s) Avg. F1

GCN 49,280 2.47 0.8964

GIN 49,347 3.19 0.9024

GraphConv 98,627 3.72 0.8989

Pro-GNN 296,289 158.03 0.7691

RS-GNN 102,722 39.51 0.7210

GCN w/ DECOR 49,410 4.63 0.9479

GIN w/ DECOR 49,477 5.09 0.9398

GraphConv w/ DECOR 98,757 5.17 0.9377

and avoids the potential task-irrelevant signals from user profiles

and related tweets. (4) Existing GSL methods for edge denoising

(G3) are not suited to fake news detection. One possible reason is

that these methods are similarity-guided, i.e., links between nodes

of dissimilar features are strongly suppressed. However, in our fake

news detection scenario, two news articles on different topics can

be closely connected in terms of co-engagement and veracity type.

(5) Compared with competitive fake news detectors, DECOR sub-

stantially enhances the performance of three representative GNN

backbones. This validates the effectiveness of using degrees and

co-engagement to learn a refined news engagement graph.

5.3 Ablation Study
We conduct an ablation study to assess the contribution of DECOR’s

major components in detecting fake news, and summarize the re-

sults in Figure 5. We compare DECOR with two variants, namely

DECOR-COE without co-engagement, and DECOR-Deg without

degrees (definitions given in Section 3.3).

As shown in Figure 5, comparing DECOR with either DECOR-

COE or DECOR-Deg, the superior fake news detection performance

of DECOR illustrates that both co-engagement and degrees play a

significant role in achieving the final improvements. Note that in

numerous cases, DECOR-COE guided by degrees outperforms the

corresponding GNN backbones that utilize the raw news engage-

ment graph, which is consistent with our first empirical finding

(Observation 1) on the distinctive connections between node de-

grees and news veracity. This further highlights the effectiveness of

incorporating degree-related properties for social graph refinement.

(a) PolitiFact (b) GossipCop

Figure 6: Comparison of DECOR against baselines (F1 Score)
under varying training data sizes.

5.4 Performance under Label Scarcity
Label scarcity poses an imminent challenge for real-world appli-

cations of fake news detection. Due to the timely nature of news

articles, high-quality annotations are usually scarce. We evaluate

the performance of DECOR under limited training samples, and

summarize the results in Figure 6. We observe that DECOR con-

sistently outperforms the competitive GNN baselines on the news

engagement graph for all training sizes: 20%, 40%, 60% and 80% of

the data. DECOR learns an optimized graph by explicitly leveraging

the degree-related structural signals embedded in degrees and news

co-engagement, which serves as informative news veracity indica-

tors and thereby complement the limited ground-truth knowledge

from fact-checked annotations.

5.5 Computational Efficiency
We evaluate the computational cost of DECOR regarding parameter

number and model runtime. Specifically, we train all models on the

same GPU device for 800 epochs, and compare the time elapsed.

Note that both Pro-GNN and RS-GNN adopt the same 2-layer GCN

architecture as the “GCN” method reported in Table 3.

Results in Table 3 validate that DECOR is able to achieve impres-

sive performance gains while maintaining low computational cost.

Compared with existing GSL methods, three innovations account

for DECOR’s efficiency in fake news detection: (1) DECOR lever-

ages low-dimensional features (i.e. degrees and co-engagement) to

predict an adjustment score for each edge, whereas existing GSL

methods utilize node features that are high-dimensional in terms

of news article representations. (2) DECOR utilizes a lightweight

degree correction component, which facilitates joint optimization

of the social degree correction module and the GNN detector. In

contrast, existing GSL methods adopt alternating optimization of

the GNN and the link predictor, resulting in slower model train-

ing. (3) DECOR operates as pruning on the existing edges in the

news engagement graph, whereas existing GSL methods conduct

pairwise computations (e.g. feature similarity) among all nodes.

Hence, the complexity of DECOR is linear to the number of edges,

whereas existing GSL methods incur up to quadratic complexity.

These results suggest that DECOR is suitable for deployment in

resource-limited scenarios, e.g., online fact-checking services.
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Former President George H.W. Bush has died at 

the age of 94, spokesman said in a statement on 

Sunday afternoon … 

(published on July 1, 2018 by a hoax news site).
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Figure 7: DECOR effectively downweights the noisy edges between influential real and fake news articles, while preserving the
informative edges between news of the same veracity type. The edge weights are drawn from the normalized versions of the
adjacency matrix A and the DECOR-refined A𝑐 , respectively. The number in bold font beside each user icon represents the
number of user engagements associated with the corresponding news article.

5.6 Case Study
To further illustrate why DECOR outperforms existing social graph

basedmodels andGSLmethods, we conduct a case study to illustrate

DECOR’s capability of downweighting the noisy edges between

fake and real news articles.

In Figure 7, we visualize exemplar cases in the neighborhood

of 𝑝 , an influential fake news article published by a hoax news

site. From the subgraph on the left hand side, we observe that 𝑝

is involved in two types of edges: (1) Noisy edges with large edge

weights. 𝑝 is closely connected with three influential real news

pieces. As these articles all focus on trending political topics, they

attract a large number of common readers. (2) Clean edges with

small edge weights. 𝑝 is also connected with several fake news

pieces; however, these articles attract less social users, which re-

sults in small groups of common readers with 𝑝 . These structural

patterns are problematic, as propagating information among noisy

edges can contaminate the neighborhood, leading to suboptimal

article representations. Existing social graph based models gener-

ally assume a fixed graph structure and are thereby heavily limited

in suppressing edge noise. Prior works on similarity-guided edge

denoising also cannot address this issue, as the articles contain

similar topics but different veracity. In contrast, DECOR leverages

the structural degree-based properties in a flexible manner. This

facilitates the elimination of degree-related edge noise. From the

subgraph on the right hand side of Figure 7, we find that DECOR ef-

fectively suppresses the noisy edges, and recognizes the clean edges

by assigning larger weights. These cases provide strong empirical

evidence that DECOR effectively refines the news engagement

graph for enhanced fake news detection.

6 CONCLUSION AND FUTUREWORK
In this paper, we investigate the fake news detection problem from

a novel aspect of social graph refinement. We observe that edge

noise in the news engagement graph are degree-related, and find

that news veracity labels closely correlate with two structural prop-

erties: degrees and news co-engagement. Motivated by the DCSBM

model’s degree-based probabilistic framework for edge placement,

we develop DECOR, a degree-based learnable social graph refine-

ment framework. DECOR facilitates effective suppression of noisy

edges through a learnable social degree correction mask, which

predicts an adjustment score for each edge based on the aforemen-

tioned degree-related properties. Experiments on two real-world

benchmarks demonstrate that DECOR can be easily plugged into

various powerful GNN backbones as an enhancement. Furthermore,

DECOR’s structural corrections are guided by low-dimensional

degree-related features, allowing for computationally efficient ap-

plications. We believe our empirical and theoretical findings will

provide insights for future research in designing and refining more

complex multi-relational social graphs for fake news detection.
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Table 4: Descriptive statistics of news datasets with different topics.

Dataset PolitiFact GossipCop FANG MC-Fake (Syria War) MC-Fake (Health) MC-Fake (Covid)

# News Articles 497 16,599 727 2,259 5,322 5,248

# Real News 225 12,641 419 2,082 4,788 4,524

# Fake News 272 3,958 308 177 534 724

# User-News Engagements 227,184 963,009 41,747 268,030 632,921 647,387

# Distinct Users 143,481 202,907 30,939 136,847 386,757 303,643

A EXTENDED ANALYSIS
A.1 Degree-Related Patterns across News Topics
Recall that we made two degree-related findings in Section 3.3, on

how both degree and co-engagement of news articles closely relate to
news veracity. To investigate if these observations are generalizable

beyond political news (PolitiFact) and celebrity news (GossipCop),

we extend our analysis to four additional news datasets covering

three additional topics, namely three datasets from the MC-Fake

benchmark [22] on different topics (SyriaWar, Health and Covid-19)

and the FANG dataset [26] (contains news articles about political

events and influential rumor events).

As our observations are based on social user engagement pat-

terns, we focus on the news instances with social user engagements,

and filter the instances without any user engagement. More specif-

ically, we record social user engagements in terms of source tweets

reposting news articles and their retweets, and collect the corre-

sponding user IDs. The descriptive statistics of the datasets are

summarized in Table 4.

Following the same procedure of plotting Figure 2 and Figure 3

in Section 3.3, we visualize the node degree distributions of real and

fake news via KDE plots in Figure 8, and present the co-engagement

patterns of news article pairs in Figure 9. The plots are consistent

with our two observations in that (1) the degree distributions of
nodes representing fake and real news articles exhibit a clear dif-

ference; and (2) given the degrees, edges connecting fake and real

news typically have the lowest co-engagement, whereas edges con-

necting fake news pairs typically have the highest co-engagement.

This validates that our observed patterns are widely applicable to

news of different topics, and demonstrates promising potential of

applying veracity-related co-engagement and degree patterns to

refine social graphs that involve news of varying topics.

A.2 Discussion on Empirical Findings
In this subsection, we discuss the probable reasons leading to our

Observation 2 (Section 3.3) on veracity-related patterns between

co-engagement and degrees, which forms the key motivation of

DECOR. Recall that Observation 2 is two-fold: (A) Real-Fake news
article pairs have the lowest co-engagement given the degrees; and

(B) Fake-Fake pairs have higher co-engagement than real-real pairs

given the degrees.

We find that both (A) and (B) closely relate with the confirmation

bias theory [27], which states that users tend to seek and interpret

evidence that upholds their existing beliefs, so as to gain confidence

in their biased views.

In terms of (A), as social media platforms foster echo chambers

[12] that insulate users from opposing viewpoints, social users

tend to repeatedly engage in spreading news articles on certain

topics with similar veracity. Hence, social users are less likely to

share interest in two news articles of different veracity types (i.e.,

Real-Fake pairs), which accounts for lower co-engagement than

Fake-Fake and Real-Real pairs with the same veracity type.

The underlying phenomena for (B) may vary, as the effects of

confirmation bias can be manifested in different forms under differ-

ent topics. Under topics such as politics [40] or Covid-19 [23], social

media platforms can induce opinion polarization, where the user’s

attention is highly segregated on a set of certain opinions. In terms

of celebrity gossip, certain groups of social media users can engage

in boundary coordination to gain control over the information [21].

These phenomena result in sharp community structures, which can

be quantified via increased co-engagements.

In conclusion, our second empirical observation can be partially

explained by multiple phenomena, and the underlying phenom-

ena can differ across different topics. The benefits of our proposed

DECOR framework (Section 4) is that through incorporating a learn-

able degree correction mechanism, the model is able to recognize

the complex veracity-related degree patterns in a more flexible man-

ner. Hence, DECOR facilitates effective detection of news articles

without loss of computational efficiency.
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Figure 8: KDE plot of node degree distributions on the news engagement graph.
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Figure 9: News co-engagement patterns of news article pairs. Edges are grouped based on the connected articles’ veracity labels.
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