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Abstract—Given a retinal image, can we automatically deter-
mine whether it is of high quality (suitable for medical diagnosis)?
Can we also explain our decision, pinpointing the region or
regions that led to our decision? Images from human retinas are
vital for the diagnosis of multiple health issues, like hypertension,
diabetes, and Alzheimer’s; low quality images may force the
patient to come back again for a second scanning, wasting time
and possibly delaying treatment. However, existing retinal image
quality assessment methods are either black boxes without expla-
nations of the results or depend heavily on feature engineering or
on complex and error-prone anatomical structures’ segmentation.

Therefore, we propose EyeQual, that solves exactly this
problem. EyeQual is novel, fast for inference, accurate and
explainable, pinpointing low-quality regions on the image. We
evaluated EyeQual on two real datasets where it achieved 100%
accuracy taking just 36 milliseconds for each image.

I. INTRODUCTION

Can we automatically detect a low quality retinal image?

Can we pinpoint the regions on the image, that led to our con-

clusion? The human retina is an excellent source of biomarkers

that can help identifying early signs of several disorders,

such as heart diseases, hypertension, Alzheimer’s or Diabetic

Retinopathy (DR) [1], [2]. About 98% of people with type I

diabetes have at least background retinopathy after 25 years

of the disease [3]. At the time of diagnosis of type II diabetes

about a third of the people already have diabetic retinopathy

to certain extent. For this reason, diabetic patients need to be

routinely examined by experienced ophthalmologists.
In short, technicians acquire retinal images, and send them

to doctors who perform the diagnosis, usually in the context

of screening programs. The problem is that often images

have low quality (too dark, or too bright, etc), and doctors

cannot do reliable diagnosis. The research problems we focus

in this paper are: (a) detect retinal images that are of low

quality, as early as possible (so that the technician can acquire

another image) and (b) explain why the image is low-quality,

so that the technician can solve the appropriate problem (e.g.,

increase/decrease the illumination, improve the focus, etc).
The implementation of large-scale screening programs has

led to a great increase in the amount of retinal images that need

to be reviewed by specialists. Unfortunately, in these programs

images are acquired within different sites, by different cameras

that are operated by technicians with a varying level of

experience. As a consequence, the proportion of retinal images

acquired in clinical settings depicting insufficient quality is

variable and substantial. Niemeijer et al. [4] reported that 12%
of the images obtained in a web-based screening program

involving 1, 676 patients was considered as unreadable by

the ophthalmologists, while Fleming et al. [5] indicated that

between 5.6% and 20.5% of 33, 535 patients undergoing

screening had an ungradable image in at least one eye. This is a

relevant issue, since the missing step of immediate low-quality

control can force patients to come back to the medical center

to re-acquire extra images, or give up with the risk of delayed

diagnosis. Low-quality images also complicate diagnosis for

doctors. Therefore, there is a great interest among the retinal

image analysis community in designing reliable automatic

image quality assessment algorithms.

In short, we want to solve the problem of Explainable Image
Quality Assessment:

• Given several retinal images, with label (yes/no for

quality),

• Classify new, unlabeled images, and explain the decision.

In this paper we propose to solve the the retinal image

quality assessment problem by learning a patch classifier given

a set of eye fundus images and corresponding quality labels.

Therefore, our method not only classifies the input image, but

also returns a heatmap pinpointing the location of the high/low

quality patches, as shown in Figure 1. The first two images are

high quality, and EyeQual does label them as such; moreover,

it finds very few low-quality patches (in yellow). The rightmost

two images are of low quality, and EyeQual also correctly

declares them as such; for the first one, it pinpoints two low-

quality regions (the bottom-left, because it is too bright; the

top-right, because it is too dark). For the second low-quality

image, EyeQual classifies all the patches as low-quality, which,

as we see, are all very bright and prevent the differentiation
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Precision-Recall curve of EyeQual

Fig. 1: EyeQual can explain its decision. EyeQual gives the appropriate label, as well as marks the culprit low quality

regions (in yellow). We evaluated EyeQual in two datasets, obtaining 100% accuracy in both.

of any anatomical structure. From all images, we manually

clipped the four cornerns, for visual clarity (our EyeQual

learns to ignore them, as we describe later in section III).

In summary, our contributions are as follows:

• Novelty New method for image quality assessment:

– Learns to classify patches using only image labels;

– The proposed Shifted Weighted Average Pooling (S-

WAP) enables the automatic specification of the im-

portance of every region of the retina;

– Careful pooling of patch scores into the image score.

• Explainability: Interpretable results (visualization and

attention routing). Capable of pinpointing low quality

regions in the image.

• Accuracy: Our proposed approach achieves top perfor-

mance (100% accuracy) on a recent medium-sized and a

smaller publicly available datasets.

• Speed: Inference is fast (36 ms).

Reproducibility: our work is reproducible as we evaluate

EyeQual on a publicly available dataset and we open-source

our code1.

II. BACKGROUND AND RELATED WORK

A. Image quality assessment

Existing image quality assessment methods can be broadly

divided into four different categories: Structural approaches,

Generic techniques, Hybrid methods, and more recently, meth-

ods based on Deep Learning. Structural approaches are tech-

niques based on building and analyzing image representations

specifically designed for retinal images. Thus, they take into

account, for instance, if the amount of visible vessels is within

a reasonable proportion [6], if the main anatomical structures

are present in the image [4], or if the image intensity histogram

follows a distribution similar to that of good-quality retinal

images [7]. The major drawback of this approach is that

most of these methods rely on the segmentation of anatom-

ical landmarks, which is a complex and error-prone process,

1https://github.com/costapt/EyeQual

TABLE I: Comparison between EyeQual and other image

quality assessment approaches.
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Hybrid [12], [13], [14] � � �

DL [15], [16] � � �

EyeQual � � � � �

specially in the case of low-quality images. On the contrary,

Generic approaches employ or adapt visual features coming

from general image quality assessment methods designed to

deal with natural images, such as geometric or texture features

[8], attempting to measure defocus, lack of sharpness, wrong

illumination, etc. [9]. A particularly interesting subset of this

kind of techniques are methods supported by features inspired

on the Human Visual System, such as [10] or [11]. Generic
techniques can achieve good results in discriminating low and

high-quality retinal images, but they often lack specificity.

Hybrid approaches attempt to combine both structural and

generic principles [12], [13], [14]. Lastly, the Deep Learning
category comprises the most recent techniques proposed for

retinal image quality assessment [15], [16]. In this case, large

databases labeled with quality information are supplied to a

deep neural network, which automatically learns optimal im-

age representations for the task at hand. The main disadvantage

of Deep Learning techniques is the need for a large set of

labeled data, and the typical lack of interpretability of the

system’s output.
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B. Multiple Instance Learning

The Multiple Instance Learning (MIL) framework is a

generalization of standard supervised learning in which the

assumption of having one label for each sample (or instance) is

relaxed. In this case, we consider that a collection of instances

is grouped into a single set to which a label has been assigned.

This set is called a bag of instances, and its label influences

the behavior of the classifier regarding instances contained on

it. The goal of the learning process is then to infer instance

level predictions out of bag-level labels. Note that a given

bag may contain an arbitrary number of elements. Hence, a

key difference between standard supervised learning and MIL

is that while supervised learning methods map a fixed-size

feature vector describing a given instance into a prediction,

MIL methods map sets containing a variable number of feature

vectors, corresponding to all the instances within a bag, into

a single label.

Fundamentals of MIL: Most MIL methods follow a com-

mon hypothesis known as the Standard MIL Assumption [17].

According to this principle, all the instances inside a negative

bag are negative, while a positive bag contains at least one pos-

itive instance and an arbitrary number of negative instances.

To optimize a model based on the Standard MIL Assumption,

a metric called Diverse Density was proposed in [18] based on

computing the difference between the intersection of positive

bags and the union of negative bags. In [19] two SVM-based

formulations were proposed for the MIL problem: one that

maximizes the margin between instances, named mi-SVM,

and another that maximizes the margin between bags, named

MI-SVM. The former trains a model to classify instances

as follows: it assigns a negative label to all the instances

within negative bags, while at the same time it imputes the

labels of the instances inside positive bags, imposing that

there is always at least one positive label on them. The

model is trained iteratively in an Expectation-Maximization

fashion until convergence. The MI-SVM also trains an instance

classifier but it aggregates the classification of all the bag’s

instances by selecting the maximum among every prediction.

MIL for medical images: In the field of Computer-Aided

Diagnosis for eye fundus images, MIL-based methods have

been successfully proposed for different tasks [20], [21], [22].

In particular, techniques based on the Bag-of-Visual-Words
[23] have been widely used for Diabetic Retinopathy detection

[24], [25], [21]. In these approaches, a relaxed version of

the Standard MIL Assumption is applied, capable of learning

richer relationships between input instances. To achieve this,

instances are first encoded into a latent representation. Rep-

resentations extracted from all the instances are then pooled

into a single feature vector corresponding to a bag, and

finally a classifier is trained to distinguish between negative

and positive bags. In this way, these methods can learn a

decision function based on the presence/absence of different

instances and, as such, are more general than the Standard MIL
Assumption. Unfortunately, a relevant disadvantage of these

approaches is that they are not as interpretable as methods

Fig. 2: Proposed graphical model. Only the N input instances

X and the bag label Y are observed. Each instance has

an associated label y that depends on parameters θ. The

instance’s labels y are combined by means of a pooling

function parameterized by w to produce Y .

that learn an instance classifier. Although some efforts have

been made to make the BoVW more interpretable [21], current

methods are unable to establish which positive instances

correspond to actual lesions.

EyeQual on the other hand, is a MIL method that is able

to learn with small datasets (low data requirements), is fast at

inference time, does not require any feature engineering, scales

to large datasets and provides an explanation of its decision.

A comparison of EyeQual with the existing methods is shown

in Table I.

III. PROPOSED EYEQUAL METHOD

The approach proposed in this paper belongs to the category

of Deep Learning techniques. However, our method is care-

fully designed to avoid the dependence on a large database of

labeled images while also providing interpretable results, by

means of the MIL framework.

We start by formalizing our method by a graphical model

view and then we show how to apply it to the image quality

assessment problem. Finally we propose a pooling function

that is better suited for the task of retinal image quality

assessment than the standard Max or Average Pooling.

A. Graphical Model

In this work, we propose a method to train an instance

classifier with bag labels only (i.e. training a patch classifier

using only image labels). For that, the instances’ labels yi
are treated as latent variables which are then combined by a

pooling function f parameterized by w to infer the bag’s label

Y = f(y1, ..., yN ;w). Therefore, it is important to carefully

design the pooling function in order to properly encode the

relationship between the instances and the bag labels.

The graphical model depiction of our approach is shown

in Figure 2. We define X as a random variable representing

the set of input instances, θ as the parameters of the instance

classifier and P (yi|Xi, θ) as a Bernoulli distribution although,

in principle, it could follow any other distribution such as

a categorical distribution. The choice of this distribution is

tied with the problem to solve and influences the design of

the subsequent pooling function f . We focus on problems
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Fig. 3: Proposed EyeQual method. Convolutional Layers with 3 × 3 kernels are followed by max-pooling layers until the

receptive field of the last layer achieves the desired patch size. Note that yi only depends on the patch xi. Then, the instance’s

labels are combined using a pooling function (i.e. Shifted Weighted Average Pooling) into the image label Y . In this work we

used 512× 512 RGB input images (N = 512 and ch = 3) and Nf = 64.

where each input instance has a binary label. Moreover, Y and

(X, θ) are conditionally independent given y, meaning that the

label of the bag is completely determined by the labels of the

instances and w. This allows us to write the likelihood of Y as

P (Y |y1, ..., yN ;w). The goal is, then, to find the parameters

(θ, w) that maximize the likelihood:

θ, w = argmax
θ,w

P (Y |y1, ..., yN ;w) (1)

There are some design choices that need to be considered:

Choice #1 How to define the input instances X? We could use

wavelets, patches or any other feature extraction

method.

Choice #2 What learning algorithm should be used to model

P (yi|xi, θ)? Some choices include SVM and lo-

gistic regression.

Choice #3 What pooling function f should be used? For

instance, Sum Pooling, Max Pooling or Average

Pooling could be used.

Since these choices depend on the problem to solve, we

decided to test this model on the problem of image quality

assessment from eye fundus images. For that we chose to #1
use patches of the input eye fundus image as instances X and

#2 use a Convolutional Neural Network (CNN) to perform

the patch classification. Finally, we devised a novel pooling

function, derived from the Average Pooling (AP), for choice

#3.

B. Instance Feature Learning and Classification

We answer choices #1 and #2 are related. CNNs have been

used with great success for image classification problems.

These models are able to extract features from raw data often

achieving superior results compared to feature engineering

approaches. However, as CNNs can easily learn irrelevant

features, they usually require large amounts of data to avoid

overfiting. To minimize this issue, some works use CNNs to

classify patches of the images making it impossible for the

network to correlate two pixels that are far away from each

other in the image.

Instead of extracting patches from the image and using the

same CNN model on different patches, we use a Fully Con-

volutional Network (FCN) [26] to perform patch classification

given the full input image. We achieve this by realizing that

the receptive field of each layer grows as the network gets

deeper. For instance, the receptive field of a 3×3 Convolution

Layer is, indeed, 3× 3, while two 3× 3 Convolution Layers

have a 5×5 receptive field. Therefore, we apply Convolutions

followed by pooling layers until the receptive field of the last

layer reaches the desired patch size. However, unlike FCNs,

we do not upsample the activation maps back to the size of

the input image but apply a 1× 1 convolution followed by a

sigmoid function to obtain the label of each patch. When there

is overlap between patches, it is more efficient to apply the

model to the entire image than to each patch. The architecture

of the model is shown in Figure 3.

This architecture has the disadvantage that the input patches

are not independent from each other which may result in a

decreased convergence rate while training the network with

backpropagation [27]. However, it has been shown that using

the full image to train a FCN has the same convergence rate

than sampling patches to train the same network [26] and, due

to increase in computational efficiency, training with the full

image ends up being faster.

After computing the patch labels, we need to combine them
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to produce the image label. When the problems follow the

Standard MIL Assumption the max-pooling function can be

used [19], [21]. However, the image quality assessment does

not follow this assumption as some good quality images con-

tain bad quality patches. To overcome this issue we developed

a new MIL assumption for the image quality problem. We

assume that a high quality image contains more high quality

patches than low quality ones, and that a low quality image

contains more low quality patches than high quality ones. This

can be modeled by the average function Y = 1
N

∑N
i=1 yi.

We can see that Y > 0.5 when there are more low quality

patches (yi = 1) than high quality ones and that Y < 0.5 when

there are more high quality patches than low quality ones.

C. Proposed Shifted Weighted Average Pooling
All eye fundus images are centered, having a circular

region called Field-of-View (FoV) where all the anatomical

structures are visible. Patches outside the FoV are always

dark and, therefore, are not relevant to discriminate between

high/low quality images. However, with average pooling, all

patches contribute equally to the decision. Moreover, since

a black region inside the FoV should be considered as low

quality, patches outside the FoV end up being classified as low

quality, artificially raising the final score of the image. This

introduces competition between the two classes that hinders

the optimization process and reduces the quality of the patch

classifier.
As an intermediate step, we introduce a Weighted Average

Pooling (WAP) function to solve this issue. By assigning a

non-negative weight wi ≥ 0 to all the input patches it is

possible to model the importance of each region of the image

Y =
∑N

i wiyi∑N
i wi

.

WAP improves on Average Pooling by giving a larger

weight to more discriminative regions of the retina. However,

it still makes the assumption that the (weighted) number of

high quality discriminative patches needs to be larger than

the number of low quality discriminative patches in order to

classify the image as high quality. A small number of low

quality patches inside the FoV might be sufficient to classify

the image as low quality. Therefore, we introduce a shifted

version of WAP that not only learns what are the discriminative

regions of the image, but also learns the ratio of low/high

quality patches needed inside this region to reach a decision.
We do this by realizing that the WAP is a linear classifier.

By setting s =
∑N

i |wi|, the model follows the following

decision:

Y =

{
1 if

∑N
i

|wi|
s yi ≥ 0.5

0 otherwise
(2)

The differences between the decision function of WAP and

a logistic regression classifier are threefold: 1) WAP has a

constant bias b = −0.5 while the logistic regression is able to

learn it; 2) the weights of the WAP are scaled by s prior to

the multiplication by y while the logistic regression uses the

sigmoid function to normalize its output and; 3) the weights

in the logistic regression are allowed to be negative.

TABLE II: EyeQual outperforms competing methods. Re-

sults on the ARSN dataset.

Method Accuracy
Galdran et al. [11] 83.35%
VGG [28] 96.88%
Remeseiro et al. [8] 99.09%
EyeQual - Average Pooling 98.51%
EyeQual - S-WAP 100.00%

Both models have desirable properties for the image quality

assessment problem. It is important to constrain the weights

to be nonnegative, otherwise the model could potentially learn

that a low quality patch in a certain region of the retina

increases the likelihood of the image being high quality. On

the other hand, the bias term allows the model to learn the ratio

between low and high quality patches inside the discriminative

region of the retina needed to reach a decision. By combining

the advantages of both models, we get to the Shifted Weighted

Average Pooling (S-WAP):

Ỹ =

N∑
i

|wi|yi + b,

Y =
1

1 + e−Ỹ
.

(3)

(4)

S-WAP models the image quality assessment problem better

than Average Pooling and, as we will show in the evaluation

section, improves on both the results and the quality of the

produced heatmaps.

IV. RESULTS AND EVALUATION

In this section we answer the following questions:

Q1. Accuracy: How accurate is EyeQual compared with

competing methods?

Q2. Explainability: How well do the EyeQual’s results ex-

plain its image level decision?

Q3. Efficiency: What is the inference speed of EyeQual?

To answer these questions, we evaluated our method on two

datasets: 1) ARSN and 2) DRIMDB [13].

The ARSN dataset was collected by the Portuguese Health
Authority of the Norther Region (ARSN) that screens diabetic

patients from the northern region of Portugal for signs of DR.

Eye fundus images that were successfully used by ophthal-

mologists to diagnose patients were labeled as high quality,

while images from undiagnosable exams were labeled as low

quality. This dataset is proprietary and contains 330 images

(183 high and 147 low quality). The dataset was randomly

divided into a train (211 images), validation (52) and test (67)

sets.

The DRIMDB is a public dataset that contains eye fundus

images labeled in 3 classes: high quality, low quality and

outlier. We discarded the outlier images and only used the

remaining 194 high (125) and low (69) quality images. Again,

we further randomly divided this dataset into a train (124
images), validation (31) and test (39) sets.
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TABLE III: EyeQual outperforms competing methods. Re-

sults on the DRIMDB dataset.

Method Accuracy
VGG [28] 90.47%
Sevik et al. [13] 98.08%
Galdran et al. [11] 98.40%
EyeQual - Average Pooling 100.00%
EyeQual - S-WAP 100.00%

Fig. 4: S-WAP discards patches outside the FoV. The figure

shows the weights learned by EyeQual with S-WAP when

trained on the ARSN dataset. Patches outside the FoV are

given a weight close to 0 while patches inside the FoV are

given a similar weight.

A. Q1 - Accuracy

We trained EyeQual with Early Stopping, by ending the

training when the validation loss stopped improving. We then

report our results on the test set using the parameters that

achieved the lowest loss on the validation set. To properly

evaluate the method, we trained EyeQual with several pooling

functions and compared with other published methods. Results

on the ARSN dataset are shown in Table II and on the DRIMBD
in Table III.

We evaluated EyeQual with two different pooling func-

tions f : Average Pooling and S-WAP. We also tried using

the Max Pooling function but the accuracy was consistently

below 90% on the ARSN test set, confirming that the image

quality assessment problem does not follow the Standard MIL
Assumption. On the other hand, the Average Pooling function

obtains comparable results to other state-of-the-art methods in

the ARSN dataset while S-WAP is able to improve the results

achieving 100% accuracy. For DRIMDB, Average Pooling also

achieves 100% accuracy. This is due to DRIMDB images

being cropped to the FoV (Figure 6 and without black borders,

which turns every image patch into a discriminative instance.

EyeQual also outperforms VGG [28], which is a widely

used Deep Learning architecture for image classification. The

gap in performance between EyeQual and VGG increases as

the amount of training data decreases. While VGG performs

reasonably in the ARSN dataset, it gets low accuracy on the

smaller DRIMDB dataset. On the other hand, EyeQual is

robust to the amount of training data achieving the same results

on both datasets: 100% accuracy. This supports our claim that,

by focusing on image patches, EyeQual avoids overfiting.

Fig. 5: EyeQual explains. Results on the ARSN dataset.

Yellow regions are considered by the method as low quality.

S-WAP produces more meaningful heatmaps than Average

Pooling.

B. Q2 - Explainability

We can explain the results at two levels: at a dataset level

and at an image level. In the former case, S-WAP can explain

what are the regions of the dataset images that are more

discriminative and, more importantly, in the latter EyeQual

can pinpoint the regions of a given image that are of low

quality.

To get the important regions of the retina one can simply

plot the weights that S-WAP learnt. As shown in Figure 4, S-

WAP learns to give a higher weight to patches inside the FoV.

Patches outside the FoV are always dark and, therefore, are

not informative. Moreover, patches inside the FoV are assigned

with similar weights, with the exception of patches near the

border that get a slightly lower weight. The explanation for

this is that, due to the spherical shape of the retina, all images

acquired with a fundus camera show certain darkness within

the borders of the FoV, independently of their degree of

quality.

In Figure 5 we show the results of the EyeQual’s patch

classifier when trained with S-WAP and Average Pooling. It

is possible to see that both pooling methods output meaningful

heatmaps. The dark regions outside the FoV tend to be

classified as low quality patches since a dark patch inside the

FoV is a low quality one. This is why the Average Pooling

is not capable of producing results as good as the S-WAP

that weights each patch contribution taking into account its

location. S-WAP heatmaps tend to be smoother and more

meaningfull.

C. Q3 - Efficiency

Inference with EyeQual is also fast. Deep Learning meth-

ods, such as EyeQual and VGG, are able to exploit GPU’s

ability to perform parallel computations which allows for

huge speedups in inference times. We ran the Deep Learning

experiments (EyeQual and VGG) on a laptop with a mobile

Nvidia GTX 1060 GPU. Both models were implemented with
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Fig. 6: EyeQual is general. Results on a different dataset

(DRIMDB) dataset using S-WAP.

TABLE IV: EyeQual is fast. Mean inference time in millisec-

onds with 95% CI for a single image.

EyeQual VGG Remeseiro et al. [8]
Time (ms) 36± 9 79± 9 470

Keras using the Theano backend. Remeseiro et al.’s [8] method

was run on an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz,

however, the comparison is still fair as the method is not able

to exploit GPUs. Table IV shows that EyeQual is effectively

instantaneous on a laptop with a stock GPU, being faster

than both VGG and Remeseiro et al. [8]. Moreover, EyeQual

still takes less than one second when running on a stock

CPU (611 ± 16) while VGG takes more than two seconds

(2272± 136).

V. CONCLUSIONS

We presented EyeQual, which addresses the problem of

detecting low quality retinal images. The main idea is to learn

a patch classifier using only image labels.

The main advantages of the method are:

• Novelty: we propose a new method that is carefully

designed to learn a patch classifier despite the fact that it

is only trained with image labels.

• Explainability: EyeQual pinpoints the region(s) of low

image quality as shown in Figure 5.

• Accuracy: it is the only method to achieve 100% accuracy

on two datasets (Table II and III).

• Speed: inference is faster than competing state-of-the-art

methods (Table IV).

We tested EyeQual on two datasets and we show that

not only do we achieve better results than all competing

methods, but we can also explain the decision of the method

by pinpointing the low quality patches. Our method is faster

and more robust to the size of the dataset than standard deep

CNN architectures like VGG.

In the future we want to evaluate our method on a larger

dataset before deploying it in real screenings. As EyeQual is

effectively instantaneous running on a stock GPU, it could be

implemented directly on a fundus camera in order to provide

imediate feedback to the technician on whether she should

take another picture. Also, the heatmaps produced by EyeQual

should be visually validated by ophthalmologists.
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[13] U. Şevik, C. Köse, T. Berber, and H. Erdöl, “Identification of suitable
fundus images using automated quality assessment methods,” Journal
of Biomedical Optics, vol. 19, no. 4, p. 046006, Apr. 2014.

[14] L. Abdel-Hamid, A. El-Rafei, S. El-Ramly, G. Michelson, and
J. Hornegger, “Retinal image quality assessment based on image clarity
and content,” Journal of Biomedical Optics, vol. 21, no. 9, 2016.

[15] D. Mahapatra, P. K. Roy, S. Sedai, and R. Garnavi, “Retinal Image
Quality Classification Using Saliency Maps and CNNs,” in Machine
Learning in Medical Imaging. Springer, Oct. 2016, pp. 172–179.

[16] S. K. Saha, B. Fernando, J. Cuadros, D. Xiao, and Y. Kanagasingam,
“Deep Learning for Automated Quality Assessment of Color Fundus
Images in Diabetic Retinopathy Screening,” arXiv:1703.02511 [cs], Mar.
2017.

[17] J. Amores, “Multiple instance classification: Review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.

329
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