
Graph Explicit Neural Networks:
Explicitly Encoding Graphs for Efficient and Accurate Inference

Yiwei Wang
National University of Singapore

Singapore
wangyw_seu@foxmail.com

Bryan Hooi
National University of Singapore

Singapore
bhooi@comp.nus.edu.sg

Yozen Liu
Snap Inc.

The United States of America
yliu2@snap.com

Neil Shah
Snap Inc.

The United States of America
nshah@snap.com

ABSTRACT
As the state-of-the-art graph learning models, the message passing
based neural networks (MPNNs) implicitly use the graph topology
as the “pathways” to propagate node features. This implicit use
of graph topology induces the MPNNs’ over-reliance on (node)
features and high inference latency, which hinders their large-scale
applications in industrial contexts. To mitigate these weaknesses,
we propose the Graph Explicit Neural Network (GENN) frame-
work. GENN can be flexibly applied to variousMPNNs and improves
them by providing more efficient and accurate inference that is
robust in feature-constrained settings. Specifically, we carefully in-
corporate recent developments in network embedding methods to
efficiently prioritize the graph topology for inference. From this van-
tage, GENN explicitly encodes the topology as an important source
of information to mitigate the reliance on node features. More-
over, by adopting knowledge distillation (KD) techniques, GENN
takes an MPNN as the teacher to supervise the training for better
effectiveness while avoiding the teacher’s high inference latency.
Empirical results show that our GENN infers dramatically faster
than its MPNN teacher by 40×-78×. In terms of accuracy, GENN
yields significant gains (more than 40%) for its MPNN teacher when
the node features are limited based on our explicit encoding. More-
over, GENN outperforms the MPNN teacher even in feature-rich
settings thanks to our KD design.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification.

KEYWORDS
graph neural networks, knowledge distillation, explicit encoding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’23, February 27-March 3, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9407-9/23/02. . . $15.00
https://doi.org/10.1145/3539597.3570388

ACM Reference Format:
Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah. 2023. Graph Explicit
Neural Networks: Explicitly Encoding Graphs for Efficient and Accurate
Inference. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining (WSDM ’23), February 27-March 3, 2023,
Singapore, Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3539597.3570388

1 INTRODUCTION
Inference efficiency and accuracy are two popular criteria to eval-
uate a machine learning system. Nowadays, growing demands
of graph learning applications in the industry necessitate mod-
els which infer with low latency [9, 28, 50]. Besides, the increas-
ing privacy-preserving services pose accuracy challenges to graph
learning systems under limited feature constraints [26, 30, 38]. Yet,
state-of-the-art graph learning models: message passing neural net-
works (MPNNs) [16, 24, 41], struggle in these latency- and feature-
constrained settings [8, 50].

Graph topology and (node) features are two main sources of
information for graph learning. The former is irregular and discrete,
while the latter is regular and continuous, making the latter more
conveniently encoded by neural networks [19]. Given these data
characteristics, MPNNs explicitly encode the node features but
implicitly uses the graph topology as “pathways” to propagate
node features. We argue that the way MPNNs implicitly use graph
topology creates these seemingly disparate, but ultimately coupled,
fundamental limitations: over-reliance on node features [8] and
slow inference [50]. These disadvantages reduce the applicability
of MPNNs for inference in large-scale industry applications:

Overreliance on Features [8]: Because the graph topology
is only implicitly used by MPNNs as “pathways” for fetching the
neighbors’ features, if the node features are not informative, graph
topology has no valuable information to convey. As we show in
Fig. 1 (blue line), the low-feature settings severely degrade MPNN
performance, and hurt their practicality [8, 33]. This phenomenon
is consistent across various graph benchmarks (See Sec. 4.2) and
implies that MPNNs rely on the informative node features for accu-
rate predictions. In many industrial services, the models only have
limited access to node features for reasons of privacy, fairness, or
availability [27, 29, 39], where overreliance on features can lead to
serious degradation of effectiveness.

348

https://doi.org/10.1145/3539597.3570388
https://doi.org/10.1145/3539597.3570388
https://doi.org/10.1145/3539597.3570388
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570388&domain=pdf&date_stamp=2023-02-27

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah

High inference latency [50]: The implicit use of graph topol-
ogy forces MPNNs to propagate the features over the edges; in other
words, MPNNs have to fetch and transform the high dimensional
representations of many neighbors to expand the receptive fields
[44] on the graph topology. As a result, the prediction on a single
node of MPNNs requires many neighbors’ feature look-ups as well
as Multiplication-and-ACcumulation (MAC) operations and thus
causes high inference latency [50]. This makes theMPNNs challeng-
ing to deploy for latency-constrained applications which require
fast inference. This issue is also known as neighbor explosion [50]
when the number of layers is high (see Fig. 1).

Because MPNNs’ implicit use of graph topology induces both
these issues, we aim to explicitly utilize the information from
graph topology to address them and improve MPNNs. However,
graph topology is irregular and discrete, which makes it nontrivial
to handle with anMLP. To process the graph topology, we utilize the
recently developed method InstantEmbedding [33], from a classical
domain of graph learning: Network Embeddings (NEs) [37, 40]
to transform the irregular graph topology into regular node-level
embeddings. InstantEmbedding is efficient and inductive, which
forms our basis for quickly prioritizing the graph topology for
inference. On the other hand, when the node features are rich,
MPNNs are still themost effective graph learningmodels. Therefore,
in our work, we propose a knowledge distillation (KD) based GNN
framework: Graph Explicit Neural Network (GENN) to improve
MPNNs for the efficient and accurate inference that is robust to the
feature-constrained settings. GENN takes an MPNN model as the
teacher model during training, but avoids using it for inference, so
that we can benefit from the distilled knowledge of MPNNs while
avoiding their high inference latency.

We use the MPNN teacher to supervise InstantEmbedding as the
student model for fast inference and enjoy the enhanced effective-
ness from the teacher. However, InstantEmbedding is unparameter-
ized and thus cannot be supervised by MPNNs directly. To trans-
form the output of InstantEmbedding in the direction that adapts to
the MPNN teachers, we propose the topology student module that
constructs a multi-layer perceptron (MLP) upon InstantEmbedding.
The distilled topology student augments the InstantEmbedding’s
outputs for higher effectiveness. In this way, we explicitly encode
the graph topology as an important source of information for infer-
ence, so as to mitigate the overreliance on the node features.

Given our topology student that explicitly encodes graph topol-
ogy, there still exists the possibility for higher effectiveness by
utilizing the node features. Therefore, we propose an MLP based
feature student module to encode the input node features under
the guidance of the MPNN teacher as well. To fuse the information
in graph topology and features, one practical obstacle is that the
correlation between the graph data and the ground truth labels is
very complex: the labels can be more correlated with either graph
topology or features [10, 43] depending on the instance. In order to
extract the most relevant information from graph topology and fea-
tures, we utilize an attention based fusion head to learn importance
weights for our student modules, so as to fuse the graph topology
and features in an adaptive and interpretable manner [43].

During inference, GENN makes the predictions by fusing the
outputs of two student modules, avoiding any neighbor feature
fetching or transformation, unlike MPNNs. The inference of GENN

only includes two efficient students and a fusion head, which sig-
nificantly improves inference efficiency over the complex MPNN
teachers (see Fig. 1 right). In addition, GENN explicitly encodes
the graph topology as an important source of information, which
guarantees its effectiveness even with limited node features (see
Fig. 1 left). Furthermore, our GENN has natural interpretability, by
modulating relative importance of graph topology and features’
contributions to predictions via attention weights learned by our
fusion head (see Fig. 3).

We evaluate our GENN on transductive and inductive node clas-
sification tasks using multiple standard node classification bench-
mark datasets. Our results show that GENN is more effective (ac-
curate) than the MPNN teacher given rich node features, and sig-
nificantly outperforms the teacher when the node features are
limited (by more than 40% on many datasets). Qualitatively, GENN
adaptively assigns appropriate attention weights to the semantic
embeddings in different datasets. Regarding inference efficiency,
GENN enjoys 40×-78× faster inference than the MPNN teacher,
greatly improving the deployability prospects of such a model.
These results suggest that our GENN is a better choice for accu-
rate and fast inference in graph learning, especially for latency- or
feature-constrained applications.

2 RELATEDWORK
Graph Neural Networks (GNNs). Early GNNs generalize convo-
lutions to graphs [2, 7] and are later simplified to message passing
(MP) neural networks (MPNNs) – most modern GNNs proposed
afterwards can be seen as MPNNs, with architectural differences.
For example, GAT employs attention [41], and GCNII employs resid-
ual connections [4]. Unlike these works, our work proposes a new
inference paradigm to improve over MPNNs. We do not implic-
itly utilize the graph topology as “pathways” to transmit the node
features, but explicitly encode the graph topology as an essential
source of information for accurate and efficient inference on the
graph data. For any MPNN model, our GENN takes it as a teacher
and enhances its inference performance not only on efficiency but
also on the effectiveness no matter whether the input node features
are informative or not.

Inference Acceleration. Inference acceleration improvements
largely build on hardware advances [23] and algorithmic advances
through pruning [17] and quantization [15]. For GNNs, pruning
[53] and quantizing parameters [52] have been studied. These ap-
proaches speed up GNN inference to a certain extent, but do not
eliminate the core overhead of MP owing to neighbor data depen-
dency. Concurrently, Graph-MLP also tries to bypass GNN neighbor
fetching [21] by training anMLP with a neighbor-aware contrastive
loss, but it only considers transductive settings, and not the more
practical inductive setting. GLNN [50] proposes knowledge distilla-
tion of a teacher GNN model into a student MLP, which speeds up
inference by avoiding MP, but does not utilize the graph topology
during inference. Our method resolves these issues by explicitly
encoding and adaptively fusing the information in graph topology.
Note that several works also focus on speeding up GNN during
training [5, 45, 54], which are complementary to our goal on speed-
ing up model inference.

349

Graph Explicit Neural Networks: Explicitly Encoding Graphs for Efficient and Effective Inference WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Figure 1: Under the supervision of the MPNN teacher SAGE [16], our GENN achieves more accurate and efficient inference than
the teacher (“s/” denotes “supervised by”). (left) The test accuracy (in y-axis) of SAGE and our GENN on node classification of
the Cora dataset [47] with different ratios (x-axis) of the accessible node features in terms of the input channels. (right) The
inference time for ten random nodes in the OGB-Products dataset [20].

Network Embeddings (NE). Historically, the graph learning
community developed methods which view learning NEs as a di-
mension reduction problem, where the goal is to preserve distances
between nodes in a low-dimensional manifold [37, 40]. Some work
proposes neural methods for NEs [14, 32] based on random walks.
Later yet, [34] unified several skip-gram and factorization-based
NE approaches under a single paradigm. Some recent works such
as RandNE [51] and FastRP [3] iteratively project the adjacency
matrix to simulate higher-order interactions between nodes. [33]
proposes a local NE method based on Personalized PageRank that
can scale to large graphs. Notably, these recent NE methods exhibit
inductiveness and promising efficiency.

3 METHODOLOGY
As calls for privacy-preserving ML increase [38], the graph learn-
ing services are facing increasing challenges on the accuracy given
limited features. For example, since the pivotal iOS 14.5 update
[30], leading social network companies are estimated to bear a
loss of $10bn due to the restricted use of features [26]. To retain
strong user experience and revenue numbers, it is therefore desir-
able to deploy effective graph learning models which are robust to
feature-constrained settings. In addition, the growing graph learn-
ing services require the models to infer with low latency [9, 28, 50].
However, as we have analyzed in Sec. 1, the state-of-the-art MPNN
graph learning models [26, 30, 38], struggle in these feature- and
latency- constrained settings. Specifically, the way that MPNNs
implicitly use the graph topology creates problems of over-reliance
on node features [8] and slow inference [50].

To overcome these disadvantages of MPNNs so as to improve
their applicability in the industrial contexts, we propose the Graph-
Explicit Neural Network (GENN). GENN is a knowledge distillation
based GNN framework that explicitly encodes the graph topology
for efficient and accurate inference. To benefit from the suprior
effectiveness of MPNNs given rich features, GENN takes an MPNN
as the teacher model, and introduces two student modules, learning
from graph topology and features respectively, plus an attention-
based fusion mechanism. The two student modules explicitly en-
code graph topology and features as semantic embeddings, while
the attention-based mechanism adaptively extracts the valuable
information from students. Both student modules are supervised by
the MPNN teacher during training, and together offer efficient and

accurate inference. While these technical components are straight-
forward, they have extremely strong practical implications when
used together carefully. Fig. 2 illustrates the classical MPNNs and
our GENN framework, which we introduce in detail next.

MPNN Teacher. We take an MPNN as the teacher model to
produce pseudo-labels y𝑡𝑒𝑎𝑐ℎ𝑒𝑟

𝑖
:

yteacher𝑖 = MPNN(G, 𝑖, {x𝑖 , 𝑖 ∈ V}) (1)

where 𝑖 is the node index, x𝑖 is the input node feature of node 𝑖 , G
is the graph topology,V is the set of nodes, and y𝑖,teacher ∈ R𝐶 is
the predicted logit vector taking the input of only the node features,
where𝐶 is the number of classes. Since the MPNN teacher needs to
operate the message passing to fetch the features of the neighbors
multiple hops away from the target node 𝑖 , it takes the set of node
features {x𝑖 , 𝑖 ∈ V} as the input instead of x𝑖 itself.

Topology Student. Graph topology is an essential source of
information for graph learning. When the node features are limited,
the graph topology is especially crucial to be explicitly encoded as
an independent source of information. Nowadays, more and more
industrial applications of graph learning, such as social network
analysis, are facing the restrictions on the utilization of node fea-
tures due to the issues of privacy, fairness, or availability [27, 29, 39].
In this sense, the graph learning methods are desired to utilize the
graph topology better to guarantee their effectiveness given the
limited features.

However, graph topology is irregular and discrete, which makes
it difficult to be directly processed by a MLP. To encode the graph
topology, we review a classical kind of graph learning methods:
network embeddings (NEs) [37, 40]. In contrast to MPNNs, the
recent inductive NE method InstantEmbedding [33] is efficient to
transform the graph topology into node-wise representations, and
scales to large graphs, but is less effective on graph learning than
MPNNs. Therefore, we try to take InstantEmbedding as an efficient
student to learn from the more effective MPNN teachers.

Because InstantEmbedding is unparameterized and cannot be
supervised by the MPNN teacher directly, we build an MLP mod-
ule to transform the outputs of InstantEmbedding into high-level
semantic representations, which can be formulated as:

ytopology
𝑖

= MLP𝑡 (NetworkEmbedding(G, 𝑖)), (2)

350

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah

Figure 2: (left) The training and inference of existing MPNNs. (right) Our GENN framework. During training, we supervise the
topology and feature students through distilled knowledge from the MPNN teacher. During inference, the MPNN teacher is not
used. We deploy the distilled students for inference, which is more efficient and effective than the MPNN teacher.

where G is the input graph topology, and ytopology
𝑖

∈ R𝐶 is the
predicted logit vector taking the input of only the graph topology.
MLP𝑡 is the MLP for encoding graph topology, for which we set the
number of layers as same asMPNN by default for a fair comparison.

Obtaining ytopology
𝑖

is fast and easy for deployment since it does
not require the massive multiplication-and-accumulation (MAC)
operations on neighbors’ features like the popular MPNNs. The ef-
ficiency of our topology student benefits from the developments of
NE methods [3, 51], e.g., InstantEmbedding [33]. There exist other
NE options for the implementation [3, 51], but we use InstantEm-
bedding in our implementation, owing to its promising efficiency
and scalability to large graphs.

Feature Student. We construct a multi-layer perceptron (MLP)
module to encode the input node-wise features as high-level se-
mantic representations, which can be formulated as:

yfeature𝑖 = MLP𝑓 (x𝑖), (3)

where x𝑖 is the input node feature node 𝑖 , and y𝑖,feat ∈ R𝐶 is the
predicted logit vector taking the input of only the node features,
where 𝐶 is the number of classes. MLP𝑓 is the MLP for encoding
node features, for which we set the number of layers as same as
MPNN by default for a fair comparison. Obtaining yfeature

𝑖
is fast

and amenable to industrial deployment, as it sidesteps problems
induced by graph dependency [21, 50].

Fusion Head. Given the semantic embeddings retrieved from
two student modules: ytopology

𝑖
, yfeature

𝑖
, GENN makes the final pre-

dictions by fusing them. Since the ground-truth labels can be more
strongly correlated with either graph topology or features [31], we
employ the attention mechanism [43] Attention(ytopology

𝑖
, yfeature

𝑖
)

to learn the corresponding importance 𝛼 topology
𝑖

, 𝛼 feature
𝑖

for graph
topology and features as follows:

(𝛼 topology
𝑖

, 𝛼 feature𝑖) = Attention(ytopology
𝑖

, yfeature𝑖), (4)

where 𝛼
topology
𝑖

, 𝛼 feature
𝑖

indicates the attention values of node 𝑖

with embeddings ytopology
𝑖

, yfeature
𝑖

respectively. In detail, we first
transform the logits ytopology

𝑖
, yfeature

𝑖
through a nonlinear trans-

formation, and then use an attention vector q to get the attention

weights𝑤 topology
𝑖

,𝑤 feature
𝑖

as follows:

𝑤
topology
𝑖

= q𝑇 · tanh(W · ytopology
𝑖

+ b) (5)

Here, W is the weight matrix and b is the bias vector. Similarly,
we can get the attention values 𝑤 feature

𝑖
for node 𝑖 on the embed-

ding ytopology
𝑖

accordingly. We then normalize the attention values
𝑤
topology
𝑖

,𝑤 feature
𝑖

with the softmax function to get the final weight:

𝛼
topology
𝑖

= softmax(𝑤 topology
𝑖

) =
exp(𝑤 topology

𝑖
)

exp(𝑤 topology
𝑖

) + exp(𝑤 feature
𝑖

)
(6)

Larger 𝛼 topology
𝑖

implies greater importance of the corresponding
module. Similarly, 𝛼 feature

𝑖
= softmax(𝑤 feature

𝑖
) holds. Then we

attend different logits with the learned attention weights to obtain
the final prediction:

y𝑖 = 𝛼
topology
𝑖

· ytopology
𝑖

+ 𝛼 feature𝑖 · yfeature𝑖 . (7)

This attention based fusion head is analogous to the classical at-
tention modules [41, 43]. Some works use the MLP following a
concatenation of the input embeddings as the fusion head [35]; this
kind of MLP-based fusion has the fusion weights related to the
channels instead of the specific input embeddings, which makes it
difficult to assign adaptive weights for the embeddings of different
nodes. The empirical results validate our choice as well: Table 8
shows that the Attention based fusion head is more effective than
the MLP fusion on node classification.

Optimization Objective. Our optimization includes two parts:
the supervised cross-entropy loss and two consistency losses for
KD. The former is

LCE =
1

|V𝐿 |
∑︁
𝑖∈V𝐿

H(y★𝑖 , y𝑖), (8)

where H(·, ·) is the cross-entropy function [12], V𝐿 is the set of
labeled nodes, and y★

𝑖
is the ground truth label of node 𝑖 . In addition

to the supervised signals of L𝐶𝐸 , we apply consistency losses to
supervise the topology and feature students respectively using

351

Graph Explicit Neural Networks: Explicitly Encoding Graphs for Efficient and Effective Inference WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

pseudo-labels given by the MPNN teacher yteacher
𝑖

:

LCT =
1
|V|

∑︁
𝑖∈V

DKL (yteacher𝑖 ∥ytopology
𝑖

), (9)

LCF =
1
|V|

∑︁
𝑖∈V

DKL (yteacher𝑖 ∥yfeature𝑖) (10)

where DKL (·∥·) is the Kullback-Leibler divergence [22] measuring
the divergence between two distributions, andV is the set of nodes.
By minimizing LCT and LCF, we encourage both the topology and
feature students to be as effective as the MPNN teacher.

Overall, combining the cross-entropy and the consistency losses,
we have the objective function:

L = _1LCE + _2LCT + _3LCF (11)

We adaptively set the values of _1, _2, and _3 for different datasets
based on the grid beam search [18] in a scoped space _1, _2, _3 ∈
[𝑎, 𝑏] where 𝑎, 𝑏 are the boundaries of the search range. We search
the values once on the validation set of each dataset, and use the
fixed values for inference on all testing instances.

Unlike most KD work which uses the final teacher prediction
y to teach the student [13], we apply the supervision from the
teacher MPNN to two student modules separately. The advantage
of our design is two-fold: First, our design endows GENN with
higher flexibility on supervision; we can set different weights to
the specific student module to adaptively learn from the ground-
truth labels or the teacher model. Second, our loss design gives
our GENN better modularity. Every distilled student module can
independently make effective predictions by itself. Besides, the
effectiveness of each student module forms the basis of highly
accurate final predictions.

Inference. As analyzed in Sec. 1, MPNNs hold high inference
latency due to the implicit use of graph topology. Thus, during
inference, we do not use MPNNs but only uses the fused output
y𝑖 from our distilled student modules as the prediction, as shown
in Fig. 2 right. This leads to much more efficient inference than
the original MPNNs. Our GENN’s inference only includes the fast
computations on InstantEmbedding, two MLPs, and a lightweight
attention head, which saves the massive MAC operations of MPNNs
on many neighbors’ features and thus significantly reduces the
inference latency (see Fig. 1).

Discussion. Our GENN framework can be seen as leveraging
the best parts of current NE methods, MPNNs, and MLPs to achieve
strong practical desiderata which neither one can independently
achieve. Notice that the MPNNs are the state-of-the-art models on
graph learning given rich features thanks to their complex architec-
tures. Conversely, they struggle in feature- and latency- constrained
settings. We compensate for the first weakness by explicitly encod-
ing graph topology using InstantEmbedding and an MLP. We next
compensate for the second weakness by reducing MAC operations
over neighbors’ features during inference while simultaneously
leveraging the inductive bias advantages of MPNNs with KD. De-
spite the seemingly straightforward technical choices, the careful
utility of these components together achieves a very practically
strong result while greatly alleviates deployability bottlenecks. In
summary, our GENN is designed to be highly accurate, inductive,
quick during inference, and able to outperform its MPNN teachers

Table 1: Dataset statistics.

Dataset #Nodes #Edges #Classes #Attributes

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
CoraML 2,995 16,316 7 2,879
OGB-Arxiv 169,343 1,166,243 40 128
OGB-Products 2,449,029 61,859,140 47 100

in both feature-constrained and feature-rich settings via its explicit
encoding with adaptive fusion.

4 EXPERIMENTS
In this section, we evaluate the performance of our GENN frame-
work. We compare our method with MPNN teachers on the task
of node classification. We report experimental results under both
the transductive and inductive settings [50]. Then, we adjust the
ratio of the accessible node features to evaluate the generalization
of graph learning models under limited node features. In addi-
tion, we visualize the distribution of attention weights to analyze
whether GENN can learn appropriate attention weights on different
datasets. Besides, we compare the inference efficiency of our GENN
and other acceleration methods on the MPNN models. Last but
not least, we conduct the ablation studies to analyze the effects of
optimization targets and the fusion head. Our experimental settings
closely follow those of the previous work [20, 46, 50] to ensure a
fair comparison.

We use the standard benchmark datasets Cora, Citeseer, Pubmed
[47], CoraML [1], OGB-Arxiv, and OGB-Products [20] for evalu-
ation. The first four are citation networks, where each node is a
document and each edge is a citation link. OGB-Arxiv is extracted
from the Microsoft Academic Graph (MAG) [42], which is a pa-
per citation network of arXiv papers. OGB-Products is an Ama-
zon products co-purchasing network originally developed by [5].
The statistics of these datasets are summarized in Table 1. For the
datasets where the standard split is available [20, 47], we follow
the standard split for a fair comparison. Otherwise, we randomly
split the nodes in the whole graph as 30%, 20%, 50% for training,
validation, and testing respectively [1].

For all experiments in this section, we report the average and
standard deviation over ten runswith different random seeds.Model
performance is measured as accuracy, and results are reported on
the the best model selected using validation data. We set hyper-
parameters of the used techniques and considered baseline methods,
e.g., the batch size, the number of hidden units, the optimizer, and
the learning rate as suggested by their authors. For the hyper-
parameters of our GENN method, we set the search range of the
hyperparameters in Eq. (11) as [0, 2] and the search step 0.1. We
run all experiments on a machine with 80 Intel(R) Xeon(R) E5-2698
v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB
RAM.

4.1 Performance with the SAGE Teacher
For a fair comparison, we use the popularMPNNmodel GraphSAGE
(short as SAGE) [16] as the teacher model, to evaluate whether

352

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah

Table 2: Test accuracy of the transductive node classification of GENN under the supervision of the teacher MPNN SAGE and
the baseline methods. We conduct 10 trials with random weight initialization. The mean and standard deviations are reported.
The best results in each row are highlighted in bold font. ‘s/’ denotes ‘supervised by’. Δ denotes the improvements of our GENN
to the corresponding baselines.

Dataset InstantEmbedding [33] MLP [36] SAGE [16] GLNN [50] s/ SAGE GENN (Ours) s/ SAGE Δ SAGE Δ InstantEmbedding

Cora 70.6 ± 0.9 55.1 ± 0.6 81.5 ± 0.7 80.5 ± 1.1 84.0 ± 0.8 ↑ 3.1% ↑ 19.0%
Citeseer 49.4 ± 1.2 46.5 ± 0.9 70.3 ± 0.7 71.4 ± 0.9 73.1 ± 0.8 ↑ 4.0% ↑ 48.0%
Pubmed 69.1 ± 1.0 71.4 ± 0.8 79.0 ± 0.8 75.4 ± 1.2 80.3 ± 0.9 ↑ 1.6% ↑ 16.2%
CoraML 68.2 ± 1.2 36.4 ± 1.2 48.9 ± 1.0 47.2 ± 1.4 74.3 ± 1.1 ↑ 51.9% ↑ 8.9%
OGB-Arxiv 65.9 ± 0.3 55.5 ± 0.4 70.9 ± 0.2 63.5 ± 0.5 72.1 ± 0.4 ↑ 1.7% ↑ 9.4%
OGB-Products 65.1 ± 0.5 61.1 ± 0.1 78.6 ± 0.5 68.9 ± 0.5 79.2 ± 0.4 ↑ 0.8% ↑ 21.7%

Table 3: Test accuracy of the inductive node classification of GENN under the supervision of the teacher MPNN SAGE and the
baseline methods. We conduct 10 trials with random weight initialization. The mean and standard deviations are reported. The
best results in each row are highlighted in bold font. ‘s/’ denotes ‘supervised by’. Δ denotes the improvements of our GENN to
the corresponding baselines.

Dataset InstantEmbedding [33] MLP [36] SAGE [16] GLNN [50] s/ SAGE GENN (Ours) s/ SAGE Δ SAGE Δ InstantEmbedding

Cora 69.8 ± 0.8 55.1 ± 0.6 79.4 ± 0.8 73.8 ± 1.2 81.5 ± 0.6 ↑ 2.6% ↑ 16.8%
Citeseer 49.0 ± 1.3 46.5 ± 0.8 69.7 ± 0.7 69.3 ± 0.8 72.3 ± 0.8 ↑ 3.7% ↑ 47.6%
Pubmed 68.3 ± 0.8 71.4 ± 0.8 78.2 ± 0.9 74.3 ± 1.3 80.1 ± 0.9 ↑ 2.4% ↑ 17.3%
CoraML 67.6 ± 1.0 36.4 ± 1.2 47.4 ± 1.3 45.6 ± 1.2 71.9 ± 0.7 ↑ 51.7% ↑ 6.4%
OGB-Arxiv 65.3 ± 0.4 55.5 ± 0.4 70.6 ± 0.6 60.5 ± 0.5 71.1 ± 0.5 ↑ 0.7% ↑ 9.0%
OGB-Products 64.8 ± 0.3 61.1 ± 0.1 76.5 ± 0.5 68.2 ± 0.4 77.3 ± 0.3 ↑ 1.0% ↑ 19.3%

GENN can match or improve upon its teacher during inference. In
addition, we also take the InstantEmbedding [33] and MLP [36]
into comparison to evaluate whether we can leverage the best parts
of InstantEmbedding, MLP, and SAGE to achieve strong practical
performance and implications which none of them can indepen-
dently achieve. We also compare the performance of GENN with
the GLNN [50] model, which is a recently proposed KD method for
graph learning.

We report the transductive node classification results in Table 2.
We observe that our GENN, which employs SAGE as the teacher
model, outperforms the teacher SAGE by 3.1% on Cora, 4.0% on
Citeseer, 1.6% on Pubmed, 51.9% on CoraML, 1.7% on OGB-Arxiv,
0.8% on OGB-Products. As a result, our GENN outperforms all
the baseline methods including its teacher SAGE and the advanced
knowledge distillation method GLNN on the transductive node clas-
sification. Additionally, we report the inductive node classification
performance in Table 3. The similar improvements achieved by our
GENN are observed. The above experimental results validate the
effectiveness of our proposed GENN on learning from the MPNN
teacher of SAGE and improve the MPNN teacher for more accurate
inference based on our explict encoding and adaptive fusion [11].

Among other baseline methods, MLP only utilizes node features
for graph learning while the network embedding method Instan-
tEmbedding only utilizes the graph topology. Both do not fully
utilize the information in the input graph and thus cannot achieve
the best performance. GLNN also utilizes the SAGE model as the
teacher for supervision. However, it does not utilize the graph
topology for inference and thus is not as effective as our GENN.
Overall, our GENN model explicitly encodes the graph topology

and features, and adaptively fuses these two main sources of infor-
mation for graph learning, which outperforms the MPNN teacher
and achieves superior effectiveness over the baseline methods.

4.2 Performance Given Limited Node Features
In the practical applications, graph learning models usually have
limited access to node features, either for reasons of privacy, fair-
ness or availability [27, 29, 39]. For example, in a social network
application, the model may not be able to use certain users’ sen-
sitive features (e.g. underage users) [6], or use data from users in
very sparsely populated cities (e.g. to satisfy 𝑘-anonymity) [39].
Nowadays, these cases are increasing because of the higher privacy
protection demands of most people and more strict regulations
on the platforms [30, 30]. In this case, the graph learning models
are desired to exploit the graph topology better for more effective
predictions although the node features are limited.

To evaluate whether the graph learning models can general-
ize well to particularly challenging cases where node features are
limited, we propose a filtered evaluation setting, where we retain
partial node features for evaluation in the transduction node classi-
fication. In this setting, the graph learning models cannot overly
rely on the node features for node classification but have to uti-
lize the graph topology effectively for node classification. In our
experiments, we randomly remove the node features in terms of
the input channels with specific ratios and present the evaluation
results on the limited node features in Table 4. Our GENN method
is much more effective than its teacher SAGE given the limited
node features. This setting is as same as that corresponding to Fig.

353

Graph Explicit Neural Networks: Explicitly Encoding Graphs for Efficient and Effective Inference WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Table 4: Test accuracy under different ratio of accessible node
features. We conduct 10 trials with random weight initial-
ization and report the mean results. ↑ denotes performance
improvements over the SAGE teacher.

Dataset Ratio of Features SAGE [16] GENN (Ours) s/ SAGE

Cora
2% 35.2 72.5 (↑106%)
5% 40.7 72.9 (↑79%)
10% 46.3 73.5 (↑59%)

Citeseer
2% 36.5 51.4 (↑41%)
5% 43.3 52.1 (↑20%)
10% 47.2 52.3 (↑11%)

Pubmed
2% 51.3 72.6 (↑41%)
5% 58.7 73.2 (↑25%)
10% 64.0 74.0 (↑16%)

CoraML
2% 26.1 72.8 (↑179%)
5% 27.5 73.6 (↑168%)
10% 28.3 74.1 (↑162%)

OGB-Arxiv
2% 43.2 68.3 (↑58%)
5% 60.8 68.8 (↑13%)
10% 65.5 69.1 (↑5%)

OGB-Products
2% 22.3 68.0 (↑205%)
5% 36.5 68.2 (↑87%)
10% 46.9 68.5 (↑46%)

Table 5: Test accuracy of transductive node classification
without the input node features (only the identity matrix as
the node features). We conduct 10 trials with random weight
initialization and report the mean results. ↑ denotes the per-
formance improvements.

Dataset SAGE [16] GENN (Ours) s/ SAGE

Cora 63.9 72.1 (↑13%)
Citeseer 34.4 51.0 (↑48%)
Pubmed 49.2 70.0 (↑42%)
CoraML 44.8 66.2 (↑48%)
OBG-Arxiv 59.5 68.1 (↑14%)
OBG-Products 51.9 67.9 (↑31%)

1 left. Under this challenging setting, the improvements achieved
by our GENN are much higher than those with the rich features as
presented in Table 2.

Specifically, when the ratio of accessible node features is 2%,
GENN outperforms its teacher SAGE by more than 40% on all the
datasets, and even achieve the 179% and 205% improvements on
CoraML and OGB-Products respectively. Some prior work also
suggests to use the one-hot vectors as the input node features
when the input node features are limited [24, 48, 49]. We follow
this setting to replace the original node features with the one-hot
vectors. We report the experimental results in this setting in Table
5. Our GENN is still significantly more effective than its teacher
SAGE given the one-hot input node features.

When the node features are limited, graph learning models have
to utilize more informative information from graph topology to
produce effective predictions. The MPNNs only implicitly uses the

Cora Citeseer Pubmed Coraml Arxiv
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

A
tte

nt
io

n
W

ei
gh

t o
n

N
od

e
Fe

at
ur

es full features
50% features

Figure 3: Analysis of attention distribution. We visualize
the attention weights on the feature student in the y-axis
through the violin plots. When the node features are limited,
our attention based fusion adaptively assign higher weights
to the graph topology, which is relatively more informative.

graph topology as the “pathways” to transmit the input node fea-
tures, which cannot extract the valuable information from graph
topology well given limited node features. In contrast, our GENN
explicitly utilizes the graph topology as an independent source of
information, which supports the model to perform well although
the node feature are not rich. Overall, these experimental results val-
idates the effectiveness of our method to learn from graph topology
and the generalization of our method to the limited features.

4.3 Analaysis of The Attention Fusion
In order to investigate whether the attention values learned by our
proposed model are meaningful, we analyze the attention distribu-
tion. GENN learns two specific embeddings for graph topology and
features respectively, each of which is associated with the attention
values. We conduct the attention distribution analysis on differ-
ent datasets in the transductive node classification experiment, of
which the results are shown in Fig. 3. As we can see, for the Cora,
Citeseer, CoraML, and OGB-Arxiv datasets, the attention values of
the embeddings for the node features are smaller than 0.5, and thus
lower than the weights for graph topology. This implies that the
information in graph topology is more important than that in the
node features. To verify this, we can see that the results of MLP
is worse than InstantEmbedding on these datasets in Table 2 and
3. The former only uses the node features for prediction while the
latter only uses the graph topology. Conversely, for Pubmed, in
comparison with Table 2, 3, and Fig. 3, we find that MLP performs
better than InstantEmbedding. Meanwhile, the attention values of
the node embeddings on the node features are also larger than 0.5,
i.e., larger than those for graph topology.

Whenwe remove 50% node features, the attention weights on the
embeddings for node features consistently decrease in all datasets.
The reason is that when node features are limited, they provide
less valuable information for predictions. Our attention module can
adapt the weights to this change and learn the adaptive weights
accordingly. In summary, these experimental results demonstrate
that our proposed GENN can adaptively assign larger weights to
graph topology or node features when deemed more important.

354

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah

Table 6: While other inference acceleration methods speed
up SAGE, they are considerably slower than our GENN. We
report inductive inference time (in ms) on 10 randomly cho-
sen nodes. ↑ denotes the times of acceleration over SAGE.

Method OGB-Arxiv OGB-Products
Acc. (%) Time (ms) Acc. (%) Time (ms)

APPNP [25] 70.5 471.2 75.4 1989.4
SGC [45] 69.8 432.8 75.1 1902.3
SAGE [16] 70.6 493.6 76.5 2092.1

QSAGE [52] 70.1 441.2 (1.12×) 75.6 1973.8 (1.06×)
PSAGE [53] 70.3 457.1 (1.08×) 76.4 2011.9 (1.04×)
GENN (Ours) s/ SAGE 71.1 12.5 (39.5 ×) 77.3 26.7 (78.4×)

4.4 Inference Efficiency Evaluation
Common techniques of inference acceleration for GNNs include
pruning [17, 53], quantization [15, 52], and model architecture sim-
plifying, e.g., SGC, APPNP. These approaches can reduce model
parameters and Multiplication-and ACcumulation (MACs) oper-
ations. But they do not eliminate the neighbor-fetching latency
of message passing. We show an inductive inference speed com-
parison between SGC [45], APPNP [25], SAGE, quantized SAGE
from FP32 to INT8 (QSAGE) [52], SAGE with 50% weights pruned
(PSAGE) [53], and our GENN supervised by SAGE in Table 6.

With the same setting as Fig. 1 right, we observe that our GENN is
considerably faster than the baseline methods, which achieves 40× -
78× acceleration for the SAGE teacher. This result demonstrates the
advantage of our GENN on improving the inference efficiency by
eliminating the massive MAC operations over the features of many
neighbors fromMP. Meanwhile, our GENN outperforms the teacher
SAGE and other accelration techniques in terms of the effectiveness,
which validates of the benefits from our explicit encoding of graph
topology and the distilled knowledge from the teacher SAGE on
guiding our GENN students to make effective predictions.

4.5 Ablation Study
We conduct ablation studies to empirically examine the effects of
the optimization targets and the fusion head.

We report the experimental results of the ablation study on the
optimization targets, i.e., the cross entropy loss LCE and the consis-
tency losses LCT,LCF on the graph topology and features, in Table
7. We observe that the consistency losses on the graph topology
influence more on the performance when the node features are
complete. This validates the importance of effectively utilizing the
graph topology for graph learning. Minimizing our consistency
loss encourages the node representations on graph topology to
be consistent to the teacher model’s outputs, which produces rich
supervision for our model. Moreover, we observe that removing the
supervised cross-entropy loss causes serious performance degra-
dation when the node features are limited. The key reason is that
when the node features are limited, the teacher model no longer
provides informative supervision signals. In this case, GENN has to
learn from the ground-truth labels to produce effective predictions.

Table 8 presents the performance of GENN with the Attention
Fusion and the alternate MLP fusion [35], which is a MLP follow-
ing the concatenation of the two students outputs. The Attention

Table 7: We analyze the effects of the cross-entropy loss LCE,
the consistency losses on graph topology: LCT, the loss on
node features LCF, and the KD (including both LCT and LCF),
on the OGB-Arxiv dataset. ‘w/o’ denotes ‘without’.

Method Full Features 10% Features

GENN 72.1 ± 0.4 69.1 ± 0.5

w/o L𝐶𝐸 71.4 ± 0.5 65.8 ± 0.4
w/o LCT 70.7 ± 0.3 69.0 ± 0.5
w/o LCF 71.2 ± 0.4 68.9 ± 0.4

w/o KD 70.3 ± 0.1 68.7 ± 0.4

Table 8: We compare the effects of the fusion head as our
Attention based one and a MLP alternate [35].

Fusion Pubmed CoraML OGB-Products

MLP [35] 77.3 ± 1.0 68.7 ± 1.2 71.3 ± 0.5
Attention (Ours) 80.3 ± 0.9 74.3 ± 1.1 79.2 ± 0.4

Fusion outperforms the MLP fushion for the transductive node
classification on differrent datasets. The reason is that the MLP
based fusion has the fusion weights related to the channels instead
of the specific input embeddings, which makes it difficult to assign
adaptive weights for the embeddings of different nodes. In contrast,
the Attention fusion adaptively learns the fusion weights corre-
sponding to the specific students’ outputs, which adapts our GENN
to flexibly attend to the more important information between the
graph topology and features for different instances.

5 CONCLUSION
In this paper, we propose a graph learning framework, GENN,which
improves over state-of-the-art MPNNs to achieve accurate and ef-
ficient predictions at inference. GENN addresses two key issues
of MPNNs which hinders their large-scale industrial applications:
over-reliance on node features and high inference latency. Specifi-
cally, GENN explicitly encodes the graph topology as an important
source of information, which mitigates the over-reliance on node
features and significantly improve the accuracy of MPNNs by more
than 40% when features are limited. Besides, GENN eliminates
the massive fetching and transformation over many neighbors’
features, which improves the inference efficiency of MPNNs by
40×-78×. Last but not least, thanks to the distilled knowledge ap-
plied to our GENN students, GENN achieves better effectiveness
than the teacher MPNNs even when the input features are rich. We
conduct a comprehensive study of GENN’s empirical properties;
promising results on multiple graph benchmarks show that GENN
is a handy choice for deployment of graph learning approaches in
the presence of feature or latency constraints.

ACKNOWLEDGMENTS
This paper is supported by NUS ODPRT Grant R252-000-A81-133
and Singapore Ministry of Education Academic Research Fund Tier
3 under MOEs official grant number MOE2017-T3-1-007.

355

Graph Explicit Neural Networks: Explicitly Encoding Graphs for Efficient and Effective Inference WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embed-

ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[2] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[3] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven
Skiena. 2019. Fast and accurate network embeddings via very sparse random
projection. In Proceedings of the 28th ACM international conference on information
and knowledge management. 399–408.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM KDD. 257–266.

[6] Hui-Lien Chou, Yih-Lan Liu, and Chien Chou. 2019. Privacy behavior profiles of
underage Facebook users. Computers & Education 128 (2019), 473–485.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NeurIPS
29 (2016).

[8] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung
Nguyen, and Karl Aberer. 2019. On node features for graph neural networks.
arXiv preprint arXiv:1911.08795 (2019).

[9] Yoav Einav. 2019. Amazon Found Every 100ms of Latency Cost them 1% in
Sales (https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-
cost-them-1-in-sales). (2019).

[10] Lukas Faber, Yifan Lu, and Roger Wattenhofer. 2021. Should Graph Neural
Networks Use Features, Edges, Or Both? arXiv preprint:2103.06857 (2021).

[11] Tommaso Furlanello, Zachary Lipton,Michael Tschannen, Laurent Itti, andAnima
Anandkumar. 2018. Born again neural networks. In International Conference on
Machine Learning. PMLR, 1607–1616.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[13] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789–1819.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM KDD. 855–864.

[15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learning with limited numerical precision. In International conference
on machine learning. PMLR, 1737–1746.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NeurIPS 30 (2017).

[17] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. NeurIPS 28 (2015).

[18] Chris Hokamp and Qun Liu. 2017. Lexically constrained decoding for sequence
generation using grid beam search. arXiv preprint arXiv:1704.07138 (2017).

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5 (1989),
359–366.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS 33 (2020), 22118–22133.

[21] Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue
Gao. 2021. Graph-MLP: node classification without message passing in graph.
arXiv preprint arXiv:2106.04051 (2021).

[22] James M Joyce. 2011. Kullback-leibler divergence. In International encyclopedia
of statistical science. Springer, 720–722.

[23] Patrick Judd, JorgeAlbericio, Tayler Hetherington, TorMAamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Proteus: Exploiting numerical precision
variability in deep neural networks. In Proceedings of the 2016 International
Conference on Supercomputing. 1–12.

[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[25] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[26] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns, and Nigel
Shadbolt. 2022. Goodbye tracking? Impact of iOS app tracking transparency and
privacy labels. arXiv preprint arXiv:2204.03556 (2022).

[27] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. 2006. Mondrian mul-
tidimensional k-anonymity. In 22nd International conference on data engineering
(ICDE’06). IEEE, 25–25.

[28] Yawei Li, He Chen, Zhaopeng Cui, Radu Timofte, Marc Pollefeys, Gregory S
Chirikjian, and Luc Van Gool. 2021. Towards efficient graph convolutional

networks for point cloud handling. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 3752–3762.

[29] Sonia Livingstone, Kjartan Ólafsson, and Elisabeth Staksrud. 2013. Risky social
networking practices among “underage” users: Lessons for evidence-based policy.
Journal of Computer-Mediated Communication 18, 3 (2013), 303–320.

[30] Alba Ribera Martínez. 2022. Trading Off the Orchard for an Apple: the iOS 14.5
Privacy Update. Journal of European Competition Law & Practice 13, 3 (2022),
200–216.

[31] John Palowitch, Anton Tsitsulin, BrandonMayer, and Bryan Perozzi. 2022. Graph-
World: Fake Graphs Bring Real Insights for GNNs. arXiv preprint arXiv:2203.00112
(2022).

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM KDD. 701–710.

[33] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao
Tian, Silvio Lattanzi, and Bryan Perozzi. 2020. InstantEmbedding: Efficient local
node representations. arXiv preprint arXiv:2010.06992 (2020).

[34] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[35] Steffen Rendle,Walid Krichene, Li Zhang, and John Anderson. 2020. Neural collab-
orative filtering vs. matrix factorization revisited. In Fourteenth ACM conference
on recommender systems. 240–248.

[36] Martin Riedmiller and AM Lernen. 2014. Multi layer perceptron. Machine
Learning Lab Special Lecture, University of Freiburg (2014), 7–24.

[37] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323–2326.

[38] Gian Luca Scoccia, Marco Autili, Giovanni Stilo, and Paola Inverardi. 2022. An
empirical study of privacy labels on the Apple iOS mobile app store. (2022).

[39] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[40] Joshua B Tenenbaum, Vin de Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[42] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[43] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. Am-
gcn: Adaptive multi-channel graph convolutional networks. In Proceedings of the
26th ACM KDD. 1243–1253.

[44] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
2020. Nodeaug: Semi-supervised node classification with data augmentation. In
Proceedings of the 26th ACM KDD. 207–217.

[45] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[46] Cheng Yang, Jiawei Liu, and Chuan Shi. 2021. Extract the knowledge of graph
neural networks and go beyond it: An effective knowledge distillation framework.
In Proceedings of the Web Conference 2021. 1227–1237.

[47] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[48] Jiaxuan You, JonathanGomes-Selman, Rex Ying, and Jure Leskovec. 2021. Identity-
aware graph neural networks. arXiv preprint arXiv:2101.10320 (2021).

[49] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In International Conference on Machine Learning. PMLR, 7134–7143.

[50] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. 2022. Graph-less neural
networks: Teaching old mlps new tricks via distillation. ICLR (2022).

[51] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-
scale network embedding with iterative random projection. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM). IEEE, 787–796.

[52] Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and
Pietro Lio. 2020. Learned low precision graph neural networks. arXiv preprint
arXiv:2009.09232 (2020).

[53] Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor
Prasanna. 2021. Accelerating large scale real-time GNN inference using channel
pruning. arXiv preprint arXiv:2105.04528 (2021).

[54] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. NeurIPS 32 (2019).

356

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	4.1 Performance with the SAGE Teacher
	4.2 Performance Given Limited Node Features
	4.3 Analaysis of The Attention Fusion
	4.4 Inference Efficiency Evaluation
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References

