
Mixup for Node and Graph Classification
Yiwei Wang

National University of Singapore
Singapore

wangyw_seu@foxmail.com

Wei Wang
National University of Singapore

Singapore
wangwei@comp.nus.edu.sg

Yuxuan Liang
National University of Singapore

Singapore
yuxliang@outlook.com

Yujun Cai
Nanyang Technological University

Singapore
yujun001@e.ntu.edu.sg

Bryan Hooi
National University of Singapore

Singapore
bhooi@comp.nus.edu.sg

ABSTRACT
Mixup is an advanced data augmentationmethod for training neural
network based image classifiers, which interpolates both features
and labels of a pair of images to produce synthetic samples. How-
ever, devising the Mixup methods for graph learning is challenging
due to the irregularity and connectivity of graph data. In this paper,
we propose the Mixup methods for two fundamental tasks in graph
learning: node and graph classification. To interpolate the irregular
graph topology, we propose the two-branch graph convolution
to mix the receptive field subgraphs for the paired nodes. Mixup
on different node pairs can interfere with the mixed features for
each other due to the connectivity between nodes. To block this
interference, we propose the two-stage Mixup framework, which
uses each node’s neighbors’ representations before Mixup for graph
convolutions. For graph classification, we interpolate complex and
diverse graphs in the semantic space. Qualitatively, our Mixup
methods enable GNNs to learn more discriminative features and re-
duce over-fitting. Quantitative results show that our method yields
consistent gains in terms of test accuracy and F1-micro scores on
standard datasets, for both node and graph classification. Overall,
our method effectively regularizes popular graph neural networks
for better generalization without increasing their time complexity.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks; Regularization.

KEYWORDS
data augmentation, node classification, graph classification

ACM Reference Format:
Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021.
Mixup for Node and Graph Classification. In Proceedings of the Web Con-
ference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449796

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449796

1 INTRODUCTION
Graph neural networks (GNNs) have achieved state-of-the-art per-
formance on graph learning tasks, including node classification
[27], [65], and graph classification [16], [60]. GNNs are capable of
making predictions based on complex graph structures, thanks to
their advanced representational power. However, the increased rep-
resentational capacity comes with higher model complexity, which
can induce over-fitting and weaken the generalization ability of
GNNs. In this case, a trained GNN may capture random error or
noise instead of the underlying data distribution [66], which is not
what we expect.

To combat the over-fitting of neural networks, data augmenta-
tion has been demonstrated to be effective [38]. For node classifica-
tion specifically, [40] proposes a data augmentation method named
DropEdge. DropEdge follows the Vicinal Risk Minimization (VRM)
principle [7] to define a vicinity around each node through ran-
domly removing edges. Then, it draws additional virtual examples
from the vicinity distribution to enlarge the support of the training
distribution. In other words, it assumes that nodes have their class
labels unchanged after the edge removals. However, whether this
assumption holds is dataset-dependent and thus requires expert
knowledge for usage. Furthermore, although DropEdge models the
vicinity for the nodes sharing the same class, it does not describe
the vicinity relation across samples of different classes.

Motivated by the above issues, we aim to design Mixup [67]
methods for graph learning. Mixup is a recently proposed data
augmentation method for image classification. Through linearly in-
terpolating pixels of random image pairs and their training targets,
Mixup generates synthetic images for training (see Fig. 1). Mixup
does not need the ground-truth labels to be unchanged with the
augmented features. In contrast, it incorporates the prior knowl-
edge that interpolations of features should lead to interpolations of
the associated targets [67]. Thus, Mixup extends the training distri-
bution by constructing virtual training samples across all classes.
From this vantage, Mixup acts as an effective regularization strategy
for training image classifiers, which smoothens decision boundaries
and improves the arrangements of hidden representations [52].

Although Mixup is effective in augmenting the image data, de-
signing Mixup methods for graph learning is challenging. The
challenges are rooted in the irregularity and connectivity of graph
data. GNNs learn nodes’ representations via the ‘message pass-
ing’ mechanism, which aggregates the representations between
each node and its neighbors at each layer [58]. As a result, the

https://doi.org/10.1145/3442381.3449796
https://doi.org/10.1145/3442381.3449796

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

Figure 1: (left) For image classification, the existing Mixup generates synthetic images by interpolating both image pixels
and labels. (middle) For node classification, to mix a pair of nodes A (red) and B (blue), we need to mix their receptive field
subgraphs. (right) For graph classification, we need to mix the nodes and graph topology of a pair of graphs.

representation of a node relies on the nodes and edges inside its
receptive field [58], all of which act as its features. Thus, to mix
a pair of nodes, we need to mix their receptive field subgraphs,
which consist of nodes and topology. However, unlike image pixels,
nodes are not placed on a regular grid but are instead unordered,
which makes it difficult to pair the nodes in different (sub)graphs
for Mixup. Besides, the interpolation is not well-defined for graph
topology, which is necessary for Mixup. Furthermore, due to the
connectivity between nodes, the use of Mixup on different node
pairs can interfere with one another, which can cause conflicts and
perturb the mixed features.

In our work, we propose Mixup methods for two fundamen-
tal tasks in graph learning: node and graph classification. For the
former, we randomly pair nodes and aim to mix their receptive
field subgraphs. We propose the two-branch Mixup graph convo-
lution to interpolate the irregular graph topology. At each layer,
we conduct the graph convolutions following the paired nodes’
topology separately in two branches and then interpolate the ag-
gregated representations from the two branches before the next
layer. In this way, the receptive field subgraphs of the paired nodes
contribute to the final prediction together. To resolve the conflicts
between the results of Mixup on different node pairs, we propose
the two-stage Mixup framework. In the first stage, we perform a
feed-forward as in the original GNNs to obtain nodes’ representa-
tions without Mixup. Then in the second stage, we conduct Mixup
but use each node’s neighbors’ representations obtained from stage
one to perform the graph convolutions. As a result, each node’s
representations after Mixup do not interfere with the ‘message
passing’ for other nodes. For graph classification, we mix the paired
graphs in semantic space.

Our Mixup methods can be incorporated into popular GNNs
thanks to their succinct design. We evaluate our methods on node
classification using the Citeseer, Cora, Pubmed [33], Flickr [35], Yelp,
and Amazon [65] datasets, and on graph classification using the
standard chemical [15] and social [62] datasets. Qualitatively, our
methods enable GNNs to learn more discriminative representations

and effectively reduce over-fitting. We also observe quantitative
improvements in terms of the test accuracy and F1-micro scores,
which are higher than those achieved by the existing data aug-
mentation strategies designed for specific domains [40]. Overall,
our Mixup methods effectively regularize GNN models for better
generalization without increasing their time complexity.

2 RELATEDWORK
Node Classification Graph neural networks are the state-of-the-
art solution for node classification [59], [71]. The first work that
proposes the convolution operation on graph data is [5]. More
recently, [27] made breakthrough advancements in the task of node
classification. As a result, the model proposed in [27] is generally
denoted as the vanilla GCN or GCN (Graph Convolutional Network).
After [27], numerous methods are proposed for better performance
on the graph learning [47], [58], [13], [57], [56], [1], [64], [39]. There
are two main lines of research in this field.

The first line is to propose new GNN architectures to improve
the model capacity [23], [49], [68]. For example, LGCN [18] ranks a
node’s neighbors based on node features. It assembles a feature ma-
trix that consists of its neighborhood and sorts this feature matrix
along each column. [72] utilizes the positive pointwise mutual infor-
mation (PPMI) matrix to capture nodes co-occurrence information
through randomwalks sampled from a graph. [28] combines PageR-
ank with GNNs to enable efficient information propagation. [51]
alternatively drives local network embeddings to capture global
structural information by maximizing local mutual information.
[6] proposes a non-uniform graph convolutional strategy, which
learns different convolutional kernel weights for different neigh-
boring nodes according to their semantic meanings. [55] proposes
the low-pass ‘message passing’ for robust graph neural networks,
inhibiting the adversarial signals propagated through edges.

Another line is to propose new mini-batch training techniques
for GNNs to enhance their scalability without the loss of effective-
ness [22], [65]. GraphSAGE [22] performs uniform node sampling
on the previous layer neighbors. It enforces a pre-defined budget

Mixup for Node and Graph Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

on the sample size, so as to bound the mini-batch computation
complexity. [8] further restricts neighborhood size by requiring
only two support nodes in the previous layer. Instead of sampling
layers, ClusterGCN [10] and GraphSAINT [65] build mini-batches
from subgraphs, so as to avoid the ‘neighbor explosion’ problem.

Our work is orthogonal to the above two lines in the sense that it
does not alter the GNN architecture, or introduce a mini-batch tech-
nique. Instead, we propose a new method that can regularize GNN
models to enhance their effectiveness by augmenting the graph
data. DropEdge [40] is a pioneering work for data augmentation on
graphs. DropEdge assumes the class labels of nodes are unchanged
after the edge removals and thus requires domain knowledge for
usage. In contrast, our mixup does not need the ground-truth la-
bels to be unchanged given the augmented features and extends
the training distribution by incorporating the prior knowledge
that interpolations of features should lead to that of the associated
targets [67]. We find that the favorable characteristics of model reg-
ularization provided by our Mixup methods lead to more accurate
predictions.
Graph Classification. Early solutions to graph classification in-
clude graph kernels. The pioneering work [24] decomposes graphs
into small subgraphs and computes kernel functions based on
their pair-wise similarities. Subsequent work proposes various sub-
graphs, such as paths [3], and subtrees [44], [36]. More recently,
many efforts have been made to design graph neural networks
(GNNs) for graph classification [42], [32], [37], [19], [63], [69], [60].
Some work proposes the graph pooling methods to summarize
the node representations [60], [53], [30], [26], [25], [17], [12]. The
authors of [29] provide a unified view of local pooling and node
attention mechanisms, and study the ability of pooling methods
to generalize to larger and noisy graphs. In [9], the authors report
that linear convolutional filters followed by nonlinear set functions
achieve competitive performances. These work focuses on devel-
oping GNN architectures of higher complexity to improve their
fitting capacity. In contrast, our framework is orthogonal to them
in the sense that we propose a new data augmentation method that
enhances a GNN model by interpolating the graphs from all classes
to enlarge the support for training distribution.
Data Augmentation. Data Augmentation plays a central role in
training neural networks. It operates on the input data and im-
proves the performance significantly. For example, in image clas-
sification, DA strategies such as horizontal flips, random erasing
[70], Hide-and-Seek [46], and Cutout [14] have been shown to
improve performance. On MNIST, elastic distortions across scale,
position, and orientation have been applied to achieve impressive
results [41], [11], [45], [54]. Mixup [67], [52] is a particularly ef-
fective augmentation method for image classification, where the
neural network is trained on convex combinations of images and
their corresponding labels. We devise the Mixup methods for graph
learning, for which we propose the two-branch graph convolu-
tion and the two-stage Mixup framework to handle the irregularity
and connectivity of graph data. Different from existing data aug-
mentation techniques designed for the graph data [40], [57], [58],
which require the ground-truth labels to be unchanged after data
augmentation, our method is dataset independent and do not re-
quire domain knowledge for usage. Our Mixup methods model the

Figure 2: (left) Typically, a GNN layer updates a node’s
(red) representation by aggregating the representations of
its neighbors and itself. (right) We propose the two-branch
graph convolution to mix both nodes’ attributes and their
topology. For a pair of nodes (red and blue) to be mixed, we
mix their attributes first. Then at each layer, we conduct the
graph convolutions in two branches corresponding to the
graph topology of the paired nodes (red and blue) separately,
and mix the aggregated representations from two branches
before the next layer.

vicinity relations across nodes or graphs of different classes, which
enables GNNs to learn better arrangements of representations.

3 METHODOLOGY
We interpolate a pair of nodes/graphs as well as their ground-truth
labels to produce a novel and synthetic sample for training. To
mix the graph topology, which is highly irregular, we propose the
two-branch Mixup graph convolution (see Fig. 2(b)). Besides, to
coordinate the Mixup of different nodes in the same mini-batch,
we design a two-stage framework that utilizes the representations
learned before Mixup (see Fig. 4). Last but not least, we interpolate
the diverse and complicated graphs in the semantic embedding
space for graph classification. We discuss the details of our Mixup
methods for node and graph classification next.

3.1 Background and Motivation
Mixup is first proposed in [67] for image classification. Consider
a pair of samples (𝑥𝑖 , 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗), where 𝑥 denotes the input
feature, and 𝑦 the one-hot class label. Mixup produces the synthetic
sample as (see Fig. 1):

𝑥 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥 𝑗 , (1)
𝑦 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦 𝑗 , (2)

where 𝜆 ∈ [0, 1]. In this way, Mixup extends the training distribu-
tion by incorporating the prior knowledge that interpolations of
features should lead to interpolations of the associated labels [67].
Implementation of Mixup randomly picks one image and then pairs
it up with another image drawn from the same mini-batch.

In our work, we focus on two fundamental tasks in graph learn-
ing: node and graph classification, the former of which aims to
learn a mapping function that maps every node to a predicted class
label, while the latter maps every graph to a label. We define a
graph as 𝐺 = (V, E), where V denotes the set of nodes, and E
is the set of edges. The input attribute vector of node 𝑖 is x𝑖 , and
the neighborhood of node 𝑖 is N(𝑖) = { 𝑗 ∈ V|(𝑖, 𝑗) ∈ E}. Graph
neural networks (GNNs) are the state-of-the-art solution for both

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

Figure 3: (a) A GNN model predicts the class of node A (red) by aggregating the nodes (orange) inside node A’s receptive field.
(b) To Mixup nodes A (red) and B (blue), we should mix the features inside A and B’s receptive fields. However, if we conduct
Mixup for Node C (orange) and Node D (grey) at the same time, the mixed input features from nodes A and B are perturbed
by interference from Node D through Node C, which should be blocked.

Figure 4: (a) Existing GNNs classify all nodes in a mini-batch graph at the same time. (b) We propose the two-stage Mixup
method to resolve conflicts between the Mixup on different node pairs. At stage one, we perform the feed-forward as in
existing GNNs without Mixup. Then at stage two, we randomly pair the nodes in the mini-batch graph and mix their input
attributes. Next, we perform our two-branch Mixup graph convolutions (see Fig. 2) for the paired nodes at each layer, where
we use each node’s neighbors’ representations obtained from stage one. This ensures that each node’s representations after
Mixup do not interfere with the ‘message passing’ for other nodes.

node and graph classification [27], [60]. Typically, GNNs obtain the
nodes’ representations h(𝑙)

𝑖
at layer 𝑙 through the ‘message passing’

mechanism:

h(𝑙)
𝑖

= AGGREGATE
(
h(𝑙−1)
𝑖

,

{
h(𝑙−1)
𝑗

�� 𝑗 ∈ N (𝑖)} ,W(𝑙)) , (3)

whereW(𝑙) denotes the trainableweights at layer 𝑙 , andAGGREGATE
is an aggregation function defined by the specific GNN model [60].
h(0)
𝑖

= x𝑖 holds at the input layer. For node classification, GNNs
learn the high-level semantic representations by stacking 𝐿 layers
and minimizing the classification loss, e.g., cross-entropy [2], over
the final-layer predictions, as presented in Fig. 4(a). For graph clas-
sification, GNNs summarize nodes’ representations into a single
graph embedding through a ‘readout’ function:

h𝐺 = READOUT
({
h(𝐿)
𝑖

��𝑖 ∈ V})
, (4)

where READOUT can be a simple permutation invariant function
such as summation or a more sophisticated graph pooling function
[63], [69].

Designing Mixup for graph learning is challenging due to the
irregularity and connectivity of graph data. The classical Mixup
in Eq. (1) is defined over the assumption that the input features 𝑥
follow the format of plain vectors, which does not fit the graph data.
This motivates us to design the Mixup methods that offer effective
regularization for graph learning and easy to implement alongside
existing GNN models.

3.2 Mixup for Node Classification
We describe the ‘message passing’ of a GNN layer in Eq. (3) and Fig.
(2) [58]. In principle, a GNN layer updates node 𝑖’s representations
by aggregating the representations of itself and its neighbors. By
stacking 𝐿 layers, GNNs make the final-layer prediction of node
𝑖 based on its 𝐿-hop neighborhood, which is known as node 𝑖’s

Mixup for Node and Graph Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 1 Two-Stage Mixup for Node Classification

Input: Graph 𝐺 = (V, E) of a mini-batch, with node attributes
{x𝑖 |𝑖 ∈ V}, a GNN model with the aggregation function
AGGREGATE(·), hyper-parameter 𝛼 for the distribution of 𝜆, the
ground truth labels {y𝑖 |𝑖 ∈ V}.
Output: The trained parameters of GNN:

{
W(𝑙)

}
𝑙
.

1: for 𝑖 ← 1 to #V do
2: h(0)

𝑖
← x𝑖

3: end for
4: for 𝑙 ← 1 to 𝐿 − 1 do
5: for 𝑖 ← 1 to #V do
6: h(𝑙)

𝑖
←AGGREGATE

(
h(𝑙−1)
𝑖

,

{
h(𝑙−1)
𝑗

�� 𝑗 ∈ N (𝑖)} ,W(𝑙))
7: end for
8: end for
9: for 𝑖 ← 1 to #V do
10: Sample 𝑗 fromV
11: 𝜆← Beta(𝛼, 𝛼)
12: x̃𝑖 𝑗 ← 𝜆x𝑖 + (1 − 𝜆)x𝑗
13: ỹ𝑖 𝑗 ← 𝜆y𝑖 + (1 − 𝜆)y𝑗
14: h̃(0)

𝑖 𝑗
← x̃𝑖 𝑗

15: for 𝑙 ← 1 to 𝐿 do
16: h̃(𝑙)

𝑖 𝑗,𝑖
←AGGREGATE

(
h̃(𝑙−1)
𝑖 𝑗

,

{
h(𝑙−1)
𝑘

��𝑘 ∈ N (𝑖)} ,W(𝑙))
17: h̃(𝑙)

𝑖 𝑗, 𝑗
←AGGREGATE

(
h̃(𝑙−1)
𝑖 𝑗

,

{
h(𝑙−1)
𝑘

��𝑘 ∈ N (𝑗)} ,W(𝑙))
18: h̃(𝑙)

𝑖 𝑗
← 𝜆h̃(𝑙)

𝑖 𝑗,𝑖
+ (1 − 𝜆)h̃(𝑙)

𝑖 𝑗, 𝑗

19: end for
20: end for
21: Calculate classification loss L on

{
h̃(𝐿)
𝑖 𝑗

, ỹ𝑖 𝑗
��𝑖 ∈ V}

.

22: Back-propagation on
{
W(𝑙)

}
𝑙
for minimizing L.

receptive field [58]. In other words, to interpolate the paired nodes
𝑖 and 𝑗 , we need to mix their receptive field subgraphs. To achieve
this, we propose the two-branchMixup graph convolution as shown
in Fig. 2, where we mix the node attributes of nodes 𝑖 and 𝑗 before
the input layer:

x̃𝑖 𝑗 = 𝜆x𝑖 + (1 − 𝜆)x𝑗 , (5)

Next, we conduct the graph convolutions based on nodes 𝑖 and 𝑗 ’s
topologies separately at each layer:

h̃(𝑙)
𝑖 𝑗,𝑖

= AGGREGATE
(
h̃(𝑙−1)
𝑖 𝑗

,

{
h(𝑙−1)
𝑘

��𝑘 ∈ N (𝑖)} ,W(𝑙)) ,
h̃(𝑙)
𝑖 𝑗, 𝑗

= AGGREGATE
(
h̃(𝑙−1)
𝑖 𝑗

,

{
h(𝑙−1)
𝑘

��𝑘 ∈ N (𝑗)} ,W(𝑙)) , (6)

and mix the aggregated features from the two topologies together
before the next layer:

h̃(𝑙)
𝑖 𝑗

= 𝜆h̃(𝑙)
𝑖 𝑗,𝑖
+ (1 − 𝜆)h̃(𝑙)

𝑖 𝑗, 𝑗
, (7)

where h̃(0)
𝑖 𝑗

= x̃𝑖 𝑗 holds.
Here, how to compute the node 𝑖’s neighbors’ representations{

h(𝑙−1)
𝑘

��𝑘 ∈ N (𝑖)} in Eq. (6) is an issue. If we follow the same im-
plementation as the classical Mixup [67], i.e., we randomly pair the

nodes in the mini-batch to conduct Mixup and conduct the feed-
forward for all nodes synchronously, we can only have h(𝑙−1)

𝑘
=

h̃(𝑙−1)
𝑘𝑚

, where𝑚 is the node paired with node 𝑖’s neigbhor 𝑘 . This
causes conflicts, because node𝑚 interferes with the ‘message pass-
ing’ for node 𝑖 (see Eq. (6)) through the Mixup between𝑚 and 𝑘 ,
but node𝑚 is likely to be outside the receptive field of node 𝑖 . An
example is shown in Fig. 3. Specifically, when mixing nodes 𝑖 and 𝑗 ,
node 𝑖’s neighbors can be mixed with a node outside node 𝑖 and 𝑗 ’s
receptive fields, which adds unwanted external noise to perturb the
input features: here, by ‘external noise’, we mean any perturbation
to the input features that do not arise from the receptive fields of
nodes 𝑖 and 𝑗 .

To address the above problem, i.e., we propose the two-stage
Mixup framework as shown in Fig. 4(b). In the first stage, we con-
duct the feed-forward to GNNs for the mini-batch graph to obtain
the nodes’ hidden representations without Mixup. Next, in the sec-
ond stage, we randomly pair the nodes in the mini-batch to conduct
the Mixup of node attributes. Then, we conduct our two-branch
Mixup graph convolutions for the paired nodes as shown in Fig. 2(b).
Note that at each layer in the second stage, we use the neighbors’
representations without Mixup, which are obtained from the first
stage, to conduct the graph convolutions (see Eq. (6)). In this way,
each node’s representations after Mixup do not interfere with the
‘message passing’ for other nodes. With our two-stage framework,
we effectively prevent the input features from being perturbed by
the nodes outside the receptive fields. We sample the Mixup weight
𝜆 from the distribution Beta(𝛼, 𝛼) with a hyperparameter 𝛼 [21].
Our Mixup method for node classification is summarized in Alg. 1.

3.3 Mixup for Graph Classification
Graph neural networks utilize a READOUT function to summarize
the node-level embeddings into a graph embedding. GNNs embed
the complex and irregular graph structures into the embedding
vectors of fixed dimension. We conduct Mixup for graph classifica-
tion in the embedding space (see Fig. 5). In detail, given the graphs
𝐺1 and 𝐺2 with the embeddings h𝐺1 , h𝐺2 and the labels y𝐺1 , y𝐺2
respectively, we mix them as:

h̃𝐺1𝐺2 = 𝜆h𝐺1 + (1 − 𝜆)h𝐺2 , (8)
ỹ𝐺1𝐺2 = 𝜆y𝐺1 + (1 − 𝜆)y𝐺2 . (9)

Finally, the interpolated graph-level embedding h̃𝐺1𝐺2 will be passed
to a multi-layer perception followed by a softmax layer to produce
the predicted distribution for the targeted classes.

3.4 Discussion
Mixup has been successfully applied to the tasks on image and text
data, e.g., the classification of images [67] and sentences [20]. How-
ever, the graph data significantly differs from the above two kinds
of data. First, in a graph, the nodes are connected, while images or
sentences are isolated. Second, both the images and sentences are
well-structured, the former of which has a two-dimensional grid
and the latter of which is a one-dimensional sequence. However,
graphs hold complicated and irregular structures. These differences
pose serious challenges for Mixup. When mixing the input features,
we must consider not only the node attributes but also the graph

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

Figure 5: We mix the graph-level representations for the
Mixup on graph classification, which encodes both nodes’
attributes and graph topology.

topology, for which the interpolation is not well-defined. Therefore,
we propose the two-branch Mixup graph convolutions to handle
this problem. In this way, we do not mix the topology directly, but
mix the aggregated messages from different topology across GNN
layers. In addition to this, due to the connectivity between different
nodes and the ‘message passing’ mechanism, we need to resolve the
conflicts between the Mixup of different nodes, as visualized in Fig.
3. This motivates us to propose the two-stage Mixup framework for
node classification, where each node’s representation after Mixup
does not interfere with the ‘message passing’ for other nodes. In this
way, each node’s feature is not perturbed by the mixup happening
on its neighbors.

4 COMPLEXITY ANALYSIS
With Mixup, we train GNNs in the end-to-end style. First, since
our Mixup method for graph classification does not induce extra
computation, its complexity is the same as the original GNN model.
Second, we analyze the time complexity of our two-stage Mixup
framework for node classification. Given the dimension of node
representations on layer 𝑙 being 𝑑𝑙 , the time complexity of GCN
is O

(
#E∑𝐿

𝑙=1 𝑑𝑙 + #V
∑𝐿
𝑙=1 𝑑𝑙−1𝑑𝑙

)
[27]. In our method, the time

complexity of the first stage is O
(
#E∑𝐿−1

𝑙=1 𝑑𝑙 + #V
∑𝐿−1
𝑙=1 𝑑𝑙−1𝑑𝑙

)
.

In the second stage, we haveO
(
#E∑𝐿

𝑙=1 𝑑𝑙 + #V
∑𝐿
𝑙=1 𝑑𝑙−1𝑑𝑙

)
. Tak-

ing all the computation into consideration, we have the complexity
of O

(
#E∑𝐿

𝑙=1 𝑑𝑙 + #V
∑𝐿
𝑙=1 𝑑𝑙−1𝑑𝑙

)
, which is as same as the orig-

inal GCN. For other kinds of GNNs, the analysis is similar to the
above. Indeed, our first stage is as same as the original GNNwithout
the final layer computation, while each layer in the second stage
contributes the same complexity as that of the original GNN. Thus,
our Mixup method improves the effectiveness of GNNs without
increasing their time complexity.

5 EXPERIMENTS
In this section, we present the performance of various GNN models
trained with our Mixup methods. For node classification, we report
the experimental results under both the transductive and inductive
settings. For graph classification, we report the test accuracy on

Table 1: Statistics of the datasets for node classification.
‘m’ stands for multi-label classification, while ‘s’ for single-
label.

Dataset #Nodes #Edges #Classes #Attributes

Cora 2,708 5,429 7 (s) 1,433
Citeseer 3,327 4,732 6 (s) 3,703
Pubmed 19,717 44,338 3 (s) 500
Flickr 89,250 899,756 7 (s) 500
Yelp 716,847 6,977,410 100 (m) 300
Amazon 1,598,960 132,169,734 107 (m) 200

Table 2: Statistics of the datasets for graph classification.
#Nodes and #Edges denotes the average number of nodes and
edges per graph respectively.

Dataset #Graphs #Nodes #Edges #Classes

D&D 1,178 284.32 715.66 2
NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2

COLLAB 5,000 74.49 2457.78 3
IMDB-M 1,500 13.00 65.94 3
REDDIT-5K 4,999 508.52 594.87 5

both chemical and social graphs. After that, we adjust the volume
of labeled data to evaluate the generalization of GNNs with and
without our Mixup. In addition, we visualize the learned repre-
sentations of GNNs trained with Mixup compared with the GNNs
without Mixup. Last but not least, we conduct ablation studies to
show the sensitivity of GNNs’ performance with respect to the
hyper-parameters of our Mixup methods.

For node classification, we use the standard benchmark datasets:
Cora, Citeseer, Cora, Pubmed [33], Flickr [35], Yelp, and Amazon
[65] for evaluation. The first three are citation networks, where
each node is a document and each edge is a citation link. In Flickr,
each node represents one image. And an edge is built between
two images if they share some common properties (e.g., same ge-
ographic location, same gallery, etc.). The Yelp dataset contains a
social network, where an edge indicates that the connected users
are friends. For the Amazon dataset, a node is a product on the
Amazon website and an edge between two products is created if the
products are bought by the same customer. Each of them contains
an unweighted adjacency matrix and bag-of-words features. The
statistics of these datasets are summarized in Table 1.

We use the standard benchmark datasets: D&D [15], NCI1, PRO-
TEINS [4], COLLAB, IMDB-M, REDDIT-5K [62] for the evaluation
of graph classification. The first three are chemical datasets, where
the nodes have categorical input features. The last three are social
datasets that do not have node attributes. We follow [60], [69] to
use node degrees as attributes. The statistics of these datasets are
summarized in Table 2.

For the hyper-parameters of the baseline methods, e.g., the num-
ber of hidden units, the optimizer, the learning rate, we set them as

Mixup for Node and Graph Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 3: Test Accuracy (%) of transductive node classifica-
tion. We conduct 100 trials with random weight initializa-
tion. The mean and standard deviations are reported.

Method Citeseer Cora Pubmed

GCN [27] 77.1±1.4 88.3±0.8 86.4±1.1
GAT [50] 76.3±0.8 87.6±0.5 85.7±0.7
JKNet [61] 78.1±0.9 89.1±1.2 86.9±1.3
LGCN [18] 77.5±1.1 89.0±1.2 86.5±0.6
GMNN [39] 77.4±1.5 88.7±0.8 86.7±1.0
ResGCN [31] 77.9±0.8 88.1±0.6 87.1±1.2
DropEdge [40] + GCN 78.1±1.1 89.2±0.7 87.3±0.6
DropEdge [40] + JKNet 79.3±0.7 89.9±0.8 87.6±0.9
Mixup + GCN 78.7±0.9 90.0±0.7 87.9±0.8
Mixup + JKNet 80.1±0.8 90.4±0.9 88.3±0.6

suggested by their authors. For the hyper-parameters of our Mixup
methods, we set 𝛼 = 1 for the distribution of Mixup weights by
default.

5.1 Node Classification
We conduct the experiments under both transductive and inductive
settings for a comprehensive evaluation. In the transductive setting,
we have access to the attributes of all nodes but only the labels of
nodes in the training set for training. In the inductive setting, both
the attributes and labels of the nodes in the validation/testing set
are unavailable during training.

In the transductive node classification, we take the popular GNN
models of GCN [27], GAT [50], LGCN [18], JKNet [61], GMNN [39],
ResGCN [31], and the regularization method DropEdge [40] as the
baseline methods for comparison. We split nodes in each graph
into 60%, 20%, 20% for training, validation, and testing. We make
10 random splits and conduct the experiments for 100 trials with
random weight initialization for each split. We vary the number of
layers from 1 to 30 for each model and choose the best performing
number with respect to the validation set. The results are reported
in Table 3. We observe that our two-stage Mixup method improves
the test accuracy of GCN by 2.1% on Citeseer, 1.9% on Cora, 1.7%
on Pubmed, and improves JKNet by 2.6% on Citeseer, 1.5% on Cora,
1.6% on Pubmed respectively. As a result, our two-stage Mixup
method enhances GCN and JKNet to outperform all the baseline
methods.

In the inductive settings, we use the datasets Flickr, Yelp, Ama-
zon with the fixed partition [65] for evaluation. These datasets are
too large to be handled well by the full-batch implementations of
GCN architectures. Hence, we use more scalable GraphSAGE [22]
and GraphSAINT [65] as the baselines for comparison. We vary the
number of layers of each method from 1 to 30 for each model and
choose the best performing model with respect to the validation set.
We conduct the experiments for 100 trials with random weight
initialization. The results are reported in Table 4. GraphSAGE-
mean/LSTM/pool denotes that GraphSAGE uses mean, LSTM, and
max-pooling as the aggregator respectively. And GraphSAINT-
GCN/GAT/JKNet means that GraphSAINT takes GCN, GAT, and

Table 4: Test F1-micro score (%) of inductive node classifica-
tion. We report mean and standard deviations of 100 trials
with random weight initialization. We implement DropE-
dge and our Mixup method with GraphSAGE-mean and
GraphSAINT-GCN.

Method Flickr Yelp Amazon

GraphSAGE-mean [22] 50.1±1.1 63.4±0.6 75.8±0.2
GraphSAGE-LSTM [22] 50.3±1.3 63.2±0.8 75.7±0.1
GraphSAGE-pool [22] 50.0±0.8 63.1±0.5 75.5±0.2
DropEdge [40] + GraphSAGE 50.8±0.9 64.1±0.8 76.4±0.1
Mixup + GraphSAGE 51.6±0.8 64.6±0.6 77.3±0.1

GraphSAINT-GCN [65] 51.1±0.2 65.3±0.3 81.5±0.1
GraphSAINT-GAT [65] 50.5±0.1 65.1±0.2 81.5±0.1
GraphSAINT-JKNet [65] 51.3±0.5 65.3±0.4 81.6±0.1
DropEdge [40] + GraphSAINT 51.7±0.6 65.8±0.7 81.8±0.2
Mixup + GraphSAINT 52.4±0.4 66.3±0.4 82.0±0.1

JKNet as the backbone respectively. We implement our two-stage
Mixup method with GraphSAGE-mean and GraphSAINT-GCN to
study whether Mixup can improve the performance of GCNs un-
der the inductive setting. We observe that our two-stage Mixup
improves the test F1-micro scores of GraphSAGE-mean by 3.0% on
Flickr, 1.9% on Yelp, 2.0% on Amazon, and GraphSAINT-GCN by
2.5% on Flickr, 1.5% on Yelp, and 0.6% on Amazon respectively. As a
result, our two-stage Mixup method enhances them to outperform
the baseline methods.

Given the same GCN architecture, our Mixup method consis-
tently produces larger improvements than DropEdge. DropEdge
assumes the class labels of nodes kept unchanged after the edge
removals, which is dataset-dependent. DropEdge does not model
the vicinity relation across examples belonging to different classes
[7]. In contrast, our mixup performs the data augmentation in a
dataset independent manner and extends the training distribution
by incorporating the prior knowledge that linear interpolations of
features should lead to that of the associated targets, which has
been demonstrated to induce better representation arrangements,
and higher generalization ability [67]. Overall, the results above val-
idate that our approach is effective in improving the performance
of the popular GCN models under both transductive and inductive
settings.

5.2 Graph Classification
For graph classification, we follow [16] and [60] to use the 10-fold
cross-validation scheme for a fair comparison and evaluation. For
each training fold, as suggested by [16], we conduct an inner hold-
out technique with a 90%/10% training/validation split, i.e., we train
fifty times on a training fold holding out a random fraction (10%)
of the data to perform early stopping. These fifty separate trials are
needed to smooth the effect of unfavorable random weight initial-
ization on test performances. The final test fold score is obtained
as the mean of these fifty runs.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

Table 5: Test Accuracy (%) of graph classification. We perform 10-fold cross-validation to evaluate model performance, and
report the mean and standard derivations over 10 folds. We highlight best performances in bold.

Method D&D NCI1 PROTEINS COLLAB IMDB-M REDDIT-5K

GRAPHLET [44] 72.1 ± 3.7 64.3 ± 2.2 70.1 ± 4.1 61.7 ± 2.2 42.6 ± 2.7 36.2 ± 1.8
WL [43] 73.2 ± 1.8 76.3 ± 1.9 72.3 ± 3.4 70.4 ± 1.8 45.4 ± 2.9 49.4 ± 2.1
GCN [27] 74.2 ± 3.1 76.8 ± 2.1 73.3 ± 3.6 74.3 ± 2.0 48.2 ± 3.1 53.7 ± 1.7
DGCNN [69] 76.7 ± 4.1 76.5 ± 1.9 72.9 ± 3.5 71.1 ± 1.7 45.6 ± 3.4 49.8 ± 1.9
DiffPool [63] 75.2 ± 3.8 76.8 ± 2.0 73.6 ± 3.6 68.9 ± 2.2 45.7 ± 3.4 53.6 ± 1.4
EigenPool [34] 75.9 ± 3.9 78.7 ± 1.9 74.1 ± 3.1 70.8 ± 1.9 47.2 ± 3.0 54.5 ± 1.7
GIN [60] 75.4 ± 2.6 79.7 ± 1.8 73.5 ± 3.8 75.5 ± 2.3 48.5 ± 3.3 56.1 ± 1.6

Mixup + GCN 75.4 ± 2.8 77.7 ± 2.1 74.1 ± 3.5 75.4 ± 2.2 48.8 ± 3.5 54.6 ± 1.8
Mixup + GIN 76.8 ± 2.9 81.0 ± 1.9 74.3 ± 3.5 77.0 ± 2.2 49.9 ± 3.2 57.8 ± 1.7

Table 6: Results of node classification averaged over the 20 random splits of the varied ratio 𝑟 of training nodes, in terms of
test accuracy (%). We highlight the best performance in bold.

Method Citeseer Cora Pubmed
𝑟 = 30% 𝑟 = 40% 𝑟 = 50% 𝑟 = 30% 𝑟 = 40% 𝑟 = 50% 𝑟 = 30% 𝑟 = 40% 𝑟 = 50%

GCN [27] 74.7 ± 2.5 75.2 ± 1.8 76.3 ± 1.6 86.3 ± 1.9 86.8 ± 1.4 87.5 ± 1.0 85.1 ± 2.3 85.4 ± 1.4 85.8 ± 1.2
Mixup + GCN 76.9 ± 2.1 77.1 ± 1.5 78.1 ± 1.3 88.5 ± 1.4 88.9 ± 1.0 89.4 ± 0.9 87.0 ± 1.6 87.2 ± 1.1 87.5 ± 1.0

JKNet [61] 75.6 ± 1.9 76.0 ± 1.4 77.1 ± 1.1 86.7 ± 2.1 87.4 ± 1.5 88.2 ± 1.3 85.3 ± 2.2 85.9 ± 1.6 86.4 ± 1.4
Mixup + JKNet 78.0 ± 1.7 78.3 ± 1.2 79.2 ± 1.0 88.6 ± 2.0 89.1 ± 1.5 89.7 ± 1.2 87.2 ± 1.9 87.5 ± 1.3 87.9 ± 0.9

Table 7: Results of graph classification averaged over the 20 random splits of the varied ratio 𝑟 of labeled examples, in terms
of test accuracy (%). We highlight the best performance in bold.

Method NCI1 PROTEINS COLLAB
𝑟 = 60% 𝑟 = 70% 𝑟 = 80% 𝑟 = 60% 𝑟 = 70% 𝑟 = 80% 𝑟 = 60% 𝑟 = 70% 𝑟 = 80%

GCN [27] 68.4 ± 2.4 70.1 ± 2.2 72.9 ± 2.2 65.8 ± 4.0 67.7 ± 4.0 70.1 ± 3.9 67.7 ± 2.3 69.1 ± 2.4 71.2 ± 2.2
Mixup + GCN 72.0 ± 2.3 72.9 ± 2.3 74.7 ± 2.0 69.2 ± 3.9 70.1 ± 3.8 71.4 ± 3.8 70.8 ± 2.4 71.6 ± 2.3 73.0 ± 2.2

GIN [60] 71.1 ± 2.2 73.0 ± 2.1 75.5 ± 2.0 65.2 ± 4.1 67.1 ± 3.8 69.8 ± 3.7 68.0 ± 2.5 69.6 ± 2.5 71.8 ± 2.3
Mixup + GIN 74.7 ± 2.0 75.4 ± 2.0 77.1 ± 2.1 69.1 ± 3.9 69.8 ± 3.9 71.5 ± 3.7 70.9 ± 2.5 71.8 ± 2.4 73.9 ± 2.2

We use popular graph classification models as the baselines:
GRAPHLET [44] and Weisfeiler-Lehman Kernel (WL) [43] are clas-
sical graph kernel methods, while GCN [27], DGCNN [69], DiffPool
[63], EigenPool [34], and GIN [60] are the GNNs with state-of-the-
art performance in graph classification. We report the average and
standard deviation of test accuracy across the 10 folds within the
cross-validation on the chemical and social datasets in Table 5 re-
spectively. On the chemical datasets, we observe that our Mixup
method improves the test accuracy of GCN by 1.6% on D&D, 1.2% on
NCI1, 1.1% on PROTEINS respectively, and enhances GIN by 1.9%
on D&D, 1.6% on NCI1, 1.1% on PROTEINS. On the social datasets,
our Mixup method improves GCN by more than 1% and enhances
GIN by at least 2% on the COLLAB, IMDB-M, and REDDIT-5K
datasets in terms of test accuracy. Overall, Mixup achieves substan-
tial improvements for GCN and GIN on both the chemical and social
datasets. As a result, Mixup enhances GCN and GIN to outperform
all the baseline methods.

Taking a closer look, we observe that the graph kernel methods,
GRAPHLET and WL, generally present worse performance than
the GNN methods. This demonstrates the stronger fitting capacity
of the advanced neural network models. Mixup generally achieves
higher improvements on GIN than that on GCN. The reason is
that GIN is a more advanced GNN model proposed for graph clas-
sification than GCN. However, the increased learning power of
GIN comes with higher risks of over-fitting. Our Mixup method
effectively regularizes them by interpolating the graph representa-
tions to expand the training set, which reduces their over-fitting
tendencies successfully.

5.3 Training Set Sizing
Over-fitting tends to be more severe when training on smaller
datasets. By conducting experiments using a restricted fraction of
the available training data, we show that our Mixup method has
more significant improvements for smaller training sets.

Mixup for Node and Graph Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) GCN (b) GCN + Mixup

Figure 6: The learned representations of the nodes in the
Cora dataset (visualized by t-SNE [48]). Colors denote the
ground-truth class labels. The node representations of same
classes given byGCNwith ourMixup are concentratedmore
than those given by GCN.

First, we conduct the experiments on node classification. We
randomly select 𝑟 ∈ {30%, 40%, 50%} nodes from the whole set to
form the training set, and randomly take half of the left nodes as
the validation set, with the other half being the testing set. The
results are reported in Table 6. Empirically, our Mixup method
enhances the performance of GCN and JKNet for different sizes of
the training set. In principle, with fewer labeled nodes, i.e., smaller
𝑟 , our Mixup method gives larger accuracy improvements, because
over-fitting is more serious when the training data is limited, where
the regularization offered by our Mixup is essential to offer better
generalization.

Next, we conduct the experiments on graph classification. We
randomly select 𝑟 ∈ {60%, 70%, 80%} graphs from the whole set to
form the labeled data, with the left graphs being the test graphs,
to form a split. For each labeled set, following [16], we conduct an
inner holdout technique with a 90%/10% training/validation split.
In other words, we train fifty times on a labeled set holding out a
random fraction (10%) of the data to perform early stopping. We
conduct the experiments on 20 random splits and report the mean
and standard derivations over all the splits in Table 7. Empirically,
Mixup enhances the performance of GCN and GIN for different
sizes of the training set. In principle, with fewer labeled nodes,
i.e., smaller 𝑟 , our method gives larger accuracy improvements,
which demonstrates the necessity of the regularization given by
our Mixup especially when the labeled data is limited.

5.4 Visualization of Mixup
We study the effects of our Mixup method on GCN models during
training. We depict the test loss at each training epoch in Fig. 7
on the Cora and Citeseer datasets. As we can see, for both GCNs
with and without Mixup, their test loss decreases initially. However,
our Mixup method significantly reduces the increase in test loss at
later iterations and helps GCN models to converge to a lower test
loss. This demonstrates that our Mixup method is able to effectively
regularize GCNs to reduce over-fitting.

Fig. 6 presents the final-layer representations obtained by GCN
and GCN with our Mixup on the Cora dataset. It is shown that
the hidden layers supported by Mixup learn more discriminative
representations, thanks to the regularization given by our Mixup.

0 20 40 60 80 100 120 140 160 180 200
Epoch

0.5

0.7

0.9

1.1

1.3

1.5

1.7

Lo
ss

GCN (Test)
GCN + Mixup (Test)

(a) Cora

0 20 40 60 80 100 120 140 160 180 200
Epoch

1.0

1.2

1.4

1.6

1.8

Lo
ss

GCN (Test)
GCN + Mixup (Test)

(b) Citeseer

Figure 7: The training curves of GCN with and without our
Mixup methods.

Table 8: Test Accuracy (%) ofGCNon the Pubmed dataset and
F1-micro score (%) of GraphSAINT-GCN on the Yelp dataset
of node classificationwith andwithout our two-stage frame-
work.

Method two stages Pubmed Δ Yelp Δ

GCN [27] - 86.4±1.1 0 65.3±0.3 0

Mixup + GCN w/o 85.8±1.3 -0.6 64.2±0.6 -1.1
w/ 87.9±0.8 +1.5 66.3±0.4 +1.0

These highly discriminative representations potentially help to
produce better class predictions than less discriminative ones.

5.5 Ablation Study
We conduct a number of ablations to analyze our Mixup methods.
First, we investigate the effects of our two-stage framework. Using
our two-stage Mixup method, we can optionally not use the hid-
den representations of neighbors from the first stage during the
‘message passing’. This will enable each node’s hidden representa-
tions after Mixup to contribute to the ‘message passing’ for other
nodes, which is likely to be the unwanted inference. In that case,
we only need to conduct the second stage of our Mixup method
without the first stage. Thus, we call this simpler version as the

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

Table 9: Test Accuracy (%) of node classification given by
GCN and GCNwith ourMixupmethod of different 𝛼 values.

Method 𝛼 Citeseer Cora Flickr

GCN [27] - 77.1±1.4 88.3±0.8 51.1±0.2

Mixup + GCN

0.2 78.1±0.9 89.2±0.8 52.0±0.3
0.5 78.4±0.8 89.5±0.7 52.1±0.3
1 78.7±0.9 90.0±0.7 52.4±0.4
2 78.6±1.0 89.8±0.8 52.8±0.5
5 78.4±1.2 89.4±1.1 52.7±0.4

Table 10: Test Accuracy (%) of graph classification given by
GIN and GIN with our Mixup method of different 𝛼 values.

Method 𝛼 D&D PROTEINS IMDB-M

GIN [60] - 75.4±2.6 73.5±3.8 48.5±3.3

Mixup + GIN

0.2 76.1±2.7 74.1±3.6 49.0±3.3
0.5 76.5±2.8 74.4±3.4 49.6±3.1
1 76.8±2.7 74.3±3.5 49.9±3.2
2 76.3±2.5 74.0±3.7 49.8±3.0
5 76.0±2.6 73.7±3.8 49.5±3.1

Mixup method without our two stages. We compare the test ac-
curacy of GCN trained with our Mixup with and without the two
stages in Table 8. Mixup without our two stages does not provide
improvements, and even causes a decrease in performance, while
our two-stage Mixup method achieves consistent enhancements
on the test accuracy. The reason is that, without our two stages,
the Mixup happening on different nodes affects each other through
the ‘message passing’ across GNN layers, which alters the learned
representations of nodes and causes inconsistency between the
mixed features and labels. As a result, the GNN models are not
trained effectively to offer satisfactory performance. On the other
hand, with our two-stage Mixup, we utilize each node’s neighbors’
representations without Mixup (given by the first stage) to process
the ‘message passing’. In this way, our method prevents the Mixup
for different nodes from affecting affect each other, and the GNN
models are thus trained to effectively model the vicinity relation
across nodes of different classes [7].

Last but not least, we evaluate how sensitive our Mixup method
is to the selection of hyper-parameter value: 𝛼 , which controls the
distribution from which we randomly select the Mixup weights. We
present the experimental results on node and graph classification
with different 𝛼 in Table 9 and 10 respectively. As we can see, the
performance of both GCN and GIN with Mixup is relatively smooth
when parameters are within certain ranges, while extremely large
or small values of 𝛼 result in low performances, which should
be avoided in practice. Thus, empirically, we choose 𝛼 = 1 as
the default setting in our experiments and show that we achieve
satisfactory performance with it.

6 CONCLUSION
Inspired by the success of Mixup, an advanced data augmentation
method through sample interpolation for image classification, we
explore to propose the Mixup methods for graph learning. In partic-
ular, we propose the two-branch Mixup graph convolution method
and the two-stage Mixup framework to deal with the irregularity
and connectivity of graph data, which is distinct to image data
and poses serious challenges for Mixup. For the Mixup on graph
classification, we interpolate the complex and diverse graphs in the
semantic space. Empirical results show that our Mixup methods
act as a dataset independent regularizer to offer better generaliza-
tion for the popular GNN models on node and graph classification.
Future work includes devising Mixup methods for other graph
learning tasks beyond supervised learning, such as unsupervised,
semi-supervised, and reinforcement learning. Extending our Mixup
methods to feature-label extrapolation for more robust GNNs is
worth exploration.

ACKNOWLEDGMENTS
This paper is supported by NUS ODPRT Grant R252-000-A81-133
and Singapore Ministry of Education Academic Research Fund Tier
3 under MOEs official grant number MOE2017-T3-1-007.

REFERENCES
[1] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Falout-

sos. 2020. Midas: microcluster-based detector of anomalies in edge streams. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 3242–3249.

[2] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[3] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on

graphs. In Fifth IEEE international conference on data mining (ICDM’05). IEEE,
8–pp.

[4] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph
kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.

[5] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[6] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and
Nadia Magnenat Thalmann. 2019. Exploiting spatial-temporal relationships for
3d pose estimation via graph convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision. 2272–2281.

[7] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. 2001. Vicinal
risk minimization. In Advances in neural information processing systems. 416–422.

[8] Jianfei Chen, Jun Zhu, and Le Song. 2017. Stochastic training of graph con-
volutional networks with variance reduction. arXiv preprint arXiv:1710.10568
(2017).

[9] Ting Chen, Song Bian, and Yizhou Sun. 2019. Are powerful graph neural nets
necessary? a dissection on graph classification. arXiv preprint arXiv:1905.04579
(2019).

[10] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257–266.

[11] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column deep
neural networks for image classification. In 2012 IEEE conference on computer
vision and pattern recognition. IEEE, 3642–3649.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional neural networks on graphs with fast localized spectral filtering. arXiv
preprint arXiv:1606.09375 (2016).

[13] Ailin Deng and Bryan Hooi. 2021. Graph Neural Network-Based Anomaly
Detection in Multivariate Time Series. In Proceedings of the AAAI Conference on
Artificial Intelligence.

[14] Terrance DeVries and Graham W Taylor. 2017. Improved Regularization of
Convolutional Neural Networks with Cutout. arXiv preprint arXiv:1708.04552
(2017).

[15] Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771–783.

Mixup for Node and Graph Classification WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[16] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2019. A fair
comparison of graph neural networks for graph classification. arXiv preprint
arXiv:1912.09893 (2019).

[17] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. In Proceedings of the 36th
International Conference on Machine Learning.

[18] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learn-
able graph convolutional networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1416–1424.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

[20] Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. Augmenting data
with mixup for sentence classification: An empirical study. arXiv preprint
arXiv:1905.08941 (2019).

[21] Arjun K Gupta and Saralees Nadarajah. 2004. Handbook of beta distribution and
its applications. CRC press.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[23] Lu Haonan, Seth H Huang, Tian Ye, and Guo Xiuyan. 2019. Graph Star Net for
Generalized Multi-Task Learning. arXiv preprint arXiv:1906.12330 (2019).

[24] David Haussler. 1999. Convolution kernels on discrete structures. Technical Report.
Technical report, Department of Computer Science, University of California

[25] Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li. 2019. Attpool:
Towards hierarchical feature representation in graph convolutional networks via
attention mechanism. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 6480–6489.

[26] Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid
Morris. 2020. Memory-based graph networks. arXiv preprint arXiv:2002.09518
(2020).

[27] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[28] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[29] Boris Knyazev, Graham W Taylor, and Mohamed R Amer. 2019. Understand-
ing attention and generalization in graph neural networks. arXiv preprint
arXiv:1905.02850 (2019).

[30] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.
In 36th International Conference on Machine Learning, ICML 2019. International
Machine Learning Society (IMLS), 6661–6670.

[31] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In Proceedings of the IEEE International Conference
on Computer Vision. 9267–9276.

[32] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[33] Ben London and Lise Getoor. 2014. Collective Classification of Network Data.
Data Classification: Algorithms and Applications 399 (2014).

[34] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-
lutional networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 723–731.

[35] Julian McAuley and Jure Leskovec. 2012. Image labeling on a network: using
social-network metadata for image classification. In European conference on
computer vision. Springer, 828–841.

[36] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting.
2016. Propagation kernels: efficient graph kernels from propagated information.
Machine Learning 102, 2 (2016), 209–245.

[37] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014–2023.

[38] Luis Perez and Jason Wang. 2017. The effectiveness of data augmentation in
image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017).

[39] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn: Graph markov neural
networks. arXiv preprint arXiv:1905.06214 (2019).

[40] Yu Rong,Wenbing Huang, Tingyang Xu, and JunzhouHuang. 2019. Dropedge: To-
wards deep graph convolutional networks on node classification. In International
Conference on Learning Representations.

[41] Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. 2015. Apac: Augmented pattern
classification with neural networks. arXiv preprint arXiv:1505.03229 (2015).

[42] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

[43] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[44] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial Intelligence and Statistics. 488–495.

[45] Patrice Y Simard, David Steinkraus, John C Platt, et al. 2003. Best practices for
convolutional neural networks applied to visual document analysis.. In Icdar,
Vol. 3.

[46] Krishna Kumar Singh, Hao Yu, Aron Sarmasi, Gautam Pradeep, and Yong Jae Lee.
2018. Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised
Localization and Beyond. arXiv preprint arXiv:1811.02545 (2018).

[47] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew
Lim. 2020. Directed graph convolutional network. arXiv preprint arXiv:2004.13970
(2020).

[48] Laurens Van Der Maaten. 2014. Accelerating t-SNE using tree-based algorithms.
The Journal of Machine Learning Research 15, 1 (2014), 3221–3245.

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903 (2017).

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[51] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[52] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold mixup: Better represen-
tations by interpolating hidden states. In International Conference on Machine
Learning. PMLR, 6438–6447.

[53] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2015. Order matters: Se-
quence to sequence for sets. arXiv preprint arXiv:1511.06391 (2015).

[54] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regu-
larization of neural networks using dropconnect. In International conference on
machine learning. 1058–1066.

[55] Yiwei Wang, Shenghua Liu, Minji Yoon, Hemank Lamba, Wei Wang, Christos
Faloutsos, and Bryan Hooi. 2020. Provably Robust Node Classification via Low-
Pass Message Passing. In 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 621–630.

[56] Yiwei Wang, Wei Wang, Yujun Ca, Bryan Hooi, and Beng Chin Ooi. 2020. Detect-
ing Implementation Bugs in GraphConvolutional Network basedNode Classifiers.
In 2020 IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 313–324.

[57] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2020.
GraphCrop: Subgraph Cropping for Graph Classification. arXiv preprint
arXiv:2009.10564 (2020).

[58] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi.
2020. NodeAug: Semi-Supervised Node Classification with Data Augmentation.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 207–217.

[59] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. 2019. A Comprehensive Survey on Graph Neural Networks. arXiv
preprint arXiv:1901.00596 (2019).

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[61] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018).

[62] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1365–1374.

[63] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems. 4800–4810.

[64] Yuxuan Liang Yujun Cai Yiwei Wang, Wei Wang and Bryan Hooi. 2020. Progres-
sive Supervision for Node Classification. In Proceedings of ECML-PKDD, Vol. 2020.
2020.

[65] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[66] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2016. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530 (2016).

[67] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[68] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294 (2018).

[69] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-
to-end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yiwei, et al.

[70] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2017. Random
erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017).

[71] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2018. Graph neural networks: A review of

methods and applications. arXiv preprint arXiv:1812.08434 (2018).
[72] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for

graph-based semi-supervised classification. In Proceedings of the 2018 World Wide
Web Conference. 499–508.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Background and Motivation
	3.2 Mixup for Node Classification
	3.3 Mixup for Graph Classification
	3.4 Discussion

	4 Complexity Analysis
	5 Experiments
	5.1 Node Classification
	5.2 Graph Classification
	5.3 Training Set Sizing
	5.4 Visualization of Mixup
	5.5 Ablation Study

	6 Conclusion
	Acknowledgments
	References

