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ABSTRACT

By using Data Augmentation (DA), we present a new method to
enhance Graph Convolutional Networks (GCNs), that are the state-
of-the-art models for semi-supervised node classification. DA for
graph data remains under-explored. Due to the connections built by
edges, DA for different nodes influence each other and lead to unde-
sired results, such as uncontrollable DA magnitudes and changes of
ground-truth labels. To address this issue, we present the NodeAug
(Node-Parallel Augmentation) scheme, that creates a ‘parallel uni-
verse’ for each node to conduct DA, to block the undesired effects
from other nodes. NodeAug regularizes the model prediction of
every node (including unlabeled) to be invariant with respect to
changes induced by Data Augmentation (DA), so as to improve the
effectiveness. To augment the input features from different aspects,
we propose three DA strategies by modifying both node attributes
and the graph structure. In addition, we introduce the subgraph
mini-batch training for the efficient implementation of NodeAug.
The approach takes the subgraph corresponding to the receptive
fields of a batch of nodes as the input per iteration, rather than the
whole graph that the prior full-batch training takes. Empirically,
NodeAug yields significant gains for strong GCN models on the
Cora, Citeseer, Pubmed, and two co-authorship networks, with a
more efficient training process thanks to the proposed subgraph
mini-batch training approach.
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« Computing methodologies — Semi-supervised learning set-
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1 INTRODUCTION

Semi-Supervised node classification is a fundamental task on
graph data, which aims to classify the nodes in an (attributed)
graph given the class labels of a few nodes [19]. For this task,
Graph Convolutional Networks (GCNs) have achieved state-of-the-
art performance [30]. Typically, GCNs predict the classes via the
‘message-passing’ mechanism, i.e., they aggregate the semantic
representations between each node and its neighbors at each layer
to generate the final-layer predictions. Thus, the prediction of a
node relies on the attributes of other nodes and the graph structure
in addition to its own attributes, all of which act as its feature.

In the general semi-supervised learning (SSL) problem, effec-
tively using unlabelled data is essential [21], since labeled samples
are scarce while unlabeled data are typically present in massive
quantity and easier to obtain. In contrast, GCNs are trained only
over the predictions of the labeled nodes by minimizing the super-
vised classification loss, but the predictions of the unlabeled nodes
do not contribute to the training. This leads to the question: how
can we effectively incorporate unlabeled data into GCN models?

Hence, in this work, we regularize the predictions of all nodes
to be invariant with respect to the changes induced by Data Aug-
mentation (DA), through minimizing the classification divergence
between the original nodes and the augmented ones, a.k.a., con-
sistency training [31]. Intuitively, DA makes changes to the input
data in ways that should have relatively trivial effects on the final
node classification, based on our human knowledge, but diverse
effects to the input features. If we enforce the model predictions
to be invariant with respect to these changes, we embed human
knowledge on the labels of especially the unlabeled nodes into GCN
models, which potentially yields the performance gains. However,
to date, the DA techniques for graph data remains under-explored.

Data Augmentation has been applied successfully to the tasks on
image data, e.g., image classification [31]. A significant difference
between graph and image data is that nodes are connected, while
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images are isolated. There are various DA techniques for image
classification that augment an image by changing its own attributes,
e.g. permuting the RGB values, without affecting (the features and
labels of) other images. However, modifying the attributes of a node
or removing/adding an edge, can influence many other nodes. For
example, a node close to the change is affected seriously to have its
ground-truth label changed, and distant nodes keep their features
unaltered. Thus, under a straightforward implementation of DA, it
is difficult to ensure that the labels for each node are not altered
significantly, while their features are augmented effectively. But
this is the target of an effective DA technique [31].

To coordinate DA for different nodes, the central idea of this
paper is to make them happen in ‘parallel universes’, i.e., the mod-
ifications made for augmenting one node do not happen when
augmenting another one. In other words, one can modify the whole
graph for augmenting a node, and each node has an separate aug-
mented graph (see Fig. 1). We encapsulate this idea in a novel
framework, called NodeAug (Node-Parallel Augmentation), that
augments different nodes individually and separately. To comple-
ment NodeAug, we propose three novel DA strategies considering
the graphical factors, such as node degrees and attribute weights.
We take a node-centric hierarchical view on the graph, i.e., we
take the node to be augmented as the center and place other nodes
on different levels based on their distances to the center. To aug-
ment the central node, we replace its attributes with others in its
neighborhood and add/remove edges connecting them. We set the
probability of these actions sensitive to their levels because the
closer nodes/edges tend to be more influential for the central node.

NodeAug is a general module that can be applied for training
popular GCN models, such as GCN [17], GAT [26], and LGCN [26].
A fact of these models is that the subgraph contributing to the
prediction of a node, a.k.a., its receptive field, is typically much
smaller than the whole graph [23]. Based on this fact, we propose a
subgraph mini-batch method for efficient training. For example, in
each augmented graph, since the consistency loss is computed only
on the augmented node, we extract the subgraph corresponding
to its receptive field as the input. Our method takes the subgraphs
corresponding to a batch of nodes as the input at each training
step. As a result, it has better generalization [16] and incurs fewer
memory costs than the existing full-batch training method [17],
which processes the whole graph at each iteration. The advantage
is dominant when dealing with large-scale graphs, as illustrated
empirically.

We evaluate NodeAug on the semi-supervised node classifica-
tion task using the Cora, Citeseer, Pubmed [19], Coauthor-CS, and
Coauthor-Physics [24] datasets. Quantitatively, we observe the
improvements in accuracy for various GCN models. NodeAug im-
proves the strong LGCN [13] and Graph U-Net [12] models by a
significant margin.

Our contributions are as follows:

(1) NodeAug: We propose a novel methodology for the GCN
consistency training using Data Augmentation, named NodeAug.
NodeAug conducts DA for different nodes individually and sepa-
rately, to coordinate DA for different nodes. Moreover, we propose
three DA techniques on the graph data to complement NodeAug,
by changing both the node attributes and the graph structure.

(2) Subgraph Mini-Batch Training: We take the receptive field
subgraphs of a batch of nodes as the input at each training step,
so as to use NodeAug efficiently. It induces better generalization
[16] and reduces resource costs compared with the prior full-batch
training.

(3) Effectiveness: Our experimental results show that NodeAug,
with our DA techniques, yields significant gains for semi-supervised
node classification over the strong GCN models.

2 RELATED WORK

Consistency Training in Semi-Supervised Learning. Several
works have explored consistency training for SSL, showing it to
work well on many benchmarks [31], [6]. Generally speaking, they
inject noise into the data and regularize the model to make its
predictions consistent with respect to the noise. VAT [21] defines
the noise by approximating the direction of change in the input
space that the model is most sensitive to. More recently, some works
show that Data Augmentation (DA) is an effective approach for
injecting the noise [18]. ICT [27] and MixMatch [1] employ Mixup
[33] on top of augmentations. UDA [31] achieves state-of-the-art
performance on multiple SSL tasks including image classification.

VAT holds the cluster assumption [5]. Based on this, VAT regular-
izes the model to be locally smooth on each sample, i.e., predictions
remain invariant to the injected noise within a ball of a given ra-
dius measured by, for example, fo-norm. Different from VAT, UDA
uses DA techniques to inject noise, such as rotating the images
and replacing the document attributes. These actions adjust the
input features drastically if measured by the #2-norm, but does not
change their labels based on a human oracle. The miscellaneous
modifications made by the DA techniques embed the label informa-
tion on the unlabeled data into the trained model, which accounts
for the superior performance of UDA.

As for semi-supervised node classification, some works have
used consistency training to enhance GCN models [9]. BVAT [7] and
GraphVAT [11] extend VAT to GCN models. Since removing/adding
edges is binary and hard to measure by #2-norm, GraphVAT injects
the noise only to the node attributes. The authors of [28] follow Mix-
Match to propose GraphMix, which saves the additional gradient
computation for adversarial perturbations in BVAT and GraphVAT.
It takes a Multi-Layer Linear Perceptron as the cousin network, and
its DA technique is only to perturb the node attributes randomly. In
contrast, our approach incorporates DA techniques, as UDA does,
and does not require additional architecture like the cousin network
of GraphMix. Furthermore, we design multiple advanced DA tech-
niques that change both the node attributes and graph structure to
augment the input effectively.

Data Augmentation. Data Augmentation plays a central role
in training deep learning models. It only operates on the input
data, without changing the model architecture, but improves the
performance significantly. For example, in image classification, DA
strategies such as horizontal flips, random erasing [34], Hide-and-
Seek [25], and Cutout [8] have been shown to improve performance.
Considering the similarities of the convolutional operations over
the image and graph data, we propose two strategies to remove
the edges, that deletes partial information, and add the edges, that
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Figure 1: NodeAug augments different nodes individually
and separately. NodeAug assumes the DA for a node can
modify the whole graph. DA for different nodes happen in
’parallel universes’ (node 1in red and node 2 in blue). In each
universe, we only consider the predictions of the augmented
node, for example, node 1 in the red universe.

changes the convolutional orders. The authors of UDA [31] pro-
pose TF-IDF based word replacement strategies for augmenting the
keyword features of documents. We compare the node attributes to
the document keywords, both of which can be seen as (weighted)
bag-of-words data. From this vantage, we propose the DA strat-
egy of replacing the node attributes, additionally considering the
structural information in the graph data.

3 METHODOLOGY

In this section, we propose NodeAug (Node-Parallel Augmentation)
as the methodology for improving semi-supervised node classifi-
cation using Data Augmentation. A NodeAug module accepts a
GCN model as the input, e.g. GCN, GAT, LGCN, etc., and trains
it with DA techniques to improve its inference performance. A
NodeAug module consists of two main components: (i) A ‘parallel
universes’ DA scheme to conduct DA for different nodes individually
and separately. (ii) A consistency training scheme to minimize the
classification divergence between the predictions of the original
nodes and augmented ones.

To complement NodeAug, we propose three DA techniques for
augmenting a node by modifying the graph structure and node at-
tributes. Moreover, for the sake of efficiency, we propose a subgraph
mini-batch training method, taking the subgraphs corresponding
to the receptive fields of a batch of nodes as the input. Details are
discussed next.

3.1 Consistency Training with Data
Augmentation on Graph Data

We define a graph as G = (V, E), where V denotes the set of nodes,
and & is the set of edges. Typically, GCNs give the conditional
output distribution of node i as follows:

P(ylgi =(Vi, &), {Xj}je(yi ,@), (1)

where y is the class, x; denotes the attributes of node j, © is
the parameter set. The node set V; and the edge set &; consti-
tute the subgraph G;, which corresponds to the receptive field
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Figure 2: NodeAug conducts consistency training on all the
nodes. We add the consistency loss £ in (2) computed on
both labeled (red) and unlabeled blue nodes, to the super-
vised classification loss Lg utilized by the existing GCN mod-
els.

of node i. Note that G; is typically much smaller than G, i.e.,
|Vi] < |V],|8i] < |&|. For example, G; is the two-hop neigh-
borhood of node i in a 2-layer GCN with row-normalization [29].
Gi = (Vi,&;) and {x;}jey, contribute to the prediction of node
i, as illustrated in Eq. (1), which can be seen as the features for
classifying node i.
We obtain two insights for DA from (1):
e For augmenting node i, it would be more effective if we
modify G; = (V}, &;) and {X;} e, than altering x;, since
x; is only part of the input features for node i.
e To augment node i, the modifications to {x;} jeq,, Gi influ-
ence the input features of other nodes, and vice versa.

Following the first point, during data augmentation, we modify
the attributes of other nodes and the graph structure instead of
the node itself, so as to augment the input feature of node i ef-
fectively. To avoid the case in the second point, we propose the
‘parallel universes’ DA scheme: we conduct the DA for different
nodes individually and separately (see Fig. 1). Each node has its
own separate augmented graph. This ensures that DA for different
nodes does not influence each other, and the DA magnitude for
each node is under control. This scheme is named as NodeAug,
short for Node-Parallel Augmentation.

Assuming some DA actions have taken place on graph G for
node i, we have the augmented G and node attributes {% i€V}
Then, we denote the subgraph corresponding to its receptive field
as Gi. Valid DA changes the input features but does not alter the
labels. We embed this knowledge into the model by minimizing the
consistency loss as follows:

e D (p{s 1}y 0) (o 5. ©)).

)
where Dkp,(+]|-) is the Kullback-Leibler divergence [15] measuring
the divergence between two distributions. © is a fixed copy of the
current parameter O, indicating that the gradient is not propagated
through ©, as suggested by [21].

In addition to L, we follow the supervised classification loss
Ls utilized by prior GCN models, which typically contains the
element of cross-entropy function H (-, -) [14]:

@ 2, W(Y?,p(ylg,-=(%8i>:{xf'}je%’®))’ ¥
ieVy
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Figure 3: We replace attributes to augment the central node.
The central node is in green. NodeAug computes the at-
tribute distribution from the 2-hop neighborhood corpus
(excluding itself). After some central node attributes are re-
moved, we sample attributes from the neighborhood to take
the place (pink).

where V], is the set of labeled nodes, and y* is the one-hot label of
node i.

Overall, to make GCN models not only classify the few labeled
nodes correctly, but also classify both the labeled and unlabeled
nodes consistently before and after augmentation, we minimize the
loss as follows:

L=Ls+alc, (4

as shown in Fig. 2. We introduce the hyper-parameter « to balance
L and Lg, which is set to 1 by default.

Discussion The consistency loss L defined in Eq. (2) is similar
to that used in UDA [31]. The major difference is that UDA does not
have the subgraphs G; and Qi as inputs, because the samples that
UDA classify, e.g., images, are not connected as the nodes in a graph.
In principle, the input features of different data samples considered
by UDA do not have overlaps, while those of the nodes have. Thus,
to conduct consistency training for GCNs on the graph data, we
propose NodeAug to separate the augmentations for different nodes,
in order to coordinate DA for different nodes and simplify the design
of the graph DA strategies.

Compared with the prior consistency training methods on graphs,
GraphVAT [11] and GraphMix [28], we mainly make three advance-
ments in NodeAug. First, we design NodeAug inspired by UDA with
our proposed ‘parallel-universe’ DA scheme. Note that UDA is more
effective than VAT and MixMatch (as discussed in Sec. 2), which
are the bases of GraphVAT and MixMatch respectively. Second,
NodeAug incurs neither the additional computation for adversarial
perturbations in GraphVAT nor the extra cousin network in Graph-
Mix. This makes NodeAug more succinct and efficient. Last but
not least, GraphVAT and GraphMix inject noise into the node at-
tributes. In contrast, NodeAug offers additional flexibility allowing
more advanced DA techniques, that operate not only on the node
attributes but also the graph structure, which is introduced in the
next subsection in detail.

3.2 Data Augmentation Strategies

We propose three DA strategies for the graph data: 1). replacing
attributes; 2). removing edges; 3). adding edges. For the node to
be augmented, the first strategy replaces its attributes with other
attributes that are potentially relevant to it, while the latter two
change the paths over which GCN models aggregate the attributes
from other nodes to it. The strategies manipulate the input features

Figure 4: We remove edges to augment the central node. The
augmented node is in green. The edges and nodes with the
paths to the central node removed are in red. We remove all
the edges with the removing probability p._,e;, (defined in
Eq. (8)) higher than 0.5 for the visualization.

Add
Edges

Figure 5: We add edges to augment the central node. The aug-
mented node is in green. The edges and nodes with the level
changed are in purple. We add all the edges with the adding-
ing probability p,_,,4 (defined in Eq. (9)) higher than 0.1 for
the visualization.

of the node to be augmented in different ways, while not changing
its label with moderate magnitudes.

For the node to be augmented, we assume closer nodes/edges
tend to be more influential. We take a ‘node-centric’ hierarchical
view on the graph, i.e., the node to be augmented is at the center, and
we place other nodes onto different levels based on their distance
to the center. For example in Fig. 3, the node to be augmented is
colored green, and the circles denote the levels. The nodes directly
connected to the green node are on the inner circle (level 1), while
the 2-hop ones are on the outer circle (level 2), etc. For the ease
of expression, we denote the smaller level index as the higher one,
e.g., the nodes on level 1 are higher than those on level 2. Moreover,
we define the level of an edge as the level of the node on its lower
end, e.g., the edge connecting the central node and another on level
1 is on level 1. To simplify the DA strategies, we only consider
modifications at levels higher than level 3. The reason is that the
number of the considered nodes/edges grows exponentially as the
level index increases, but the nodes/edges lower than level 3 do not
contribute much to the prediction of the central node.

The search space for the hyper-parameters of DA magnitudes is
large if we set the parameters separately for different DA techniques.
Hence, for the convenience of setting the hyper-parameters, we
use a unified hyper-parameter p to control the magnitude of all the
three DA strategies. A higher value of p implies a larger magnitude.
Next, we introduce our DA strategies in detail.

Replace Attributes Node attributes can be thought of as a
weighted bag of words, where a higher weight indicates larger
importance. To generate both diverse and valid samples, we replace



the uninformative attributes of the central node with the attributes
possibly relevant to it. Suppose the minimum, maximum and aver-
age attribute weights of the central node are wyjn, Wmax and waye
respectively. We set the probability of having an attribute with
weight w to be removed as

w. -w
L,l), 5)

Wmax — Wave

Pa-rem = min (P

where p, as defined above, is the hyper-parameter for controlling the
augmentation magnitude. With a larger p, the probability pg—rem
increases for all the attributes, i.e., they are more likely to be re-
moved (larger DA magnitude). Wmax — Wave acts as a normalization
term, so that pg—rem for every attribute belongs to the range be-
tween 0 andp%. (Wmax —w) shows that pg—rerm is a locally
linear function negatively related to the attribute weight w. pg—rem
increases as w decreases, because we tend to remove the unim-
portant attributes. The function min(-, 1) truncates ps—rem to be a
valid probability value between 0 and 1.

After removing an attribute, we sample another one to take its
place. The sampling is done on the neighborhood including the
nodes on levels 1 and 2, denoted as V;_p,), because we assume
that the nodes in V,_p,,, are more likely to have relevant attributes
than the others distant to the center. We compute the score s of an
attribute by the sum of its weights of the nodes in V,_,,,. Denote
the set of all the attributes as X, and the minimum and average
scores in X as spin and saye respectively. Then we set the probability
of sampling an attribute of score s as

S — Smin

IRT save — S ©
where |X| - (Save — Smin) 1S @ normalization term to ensure that the
sum of the probabilities of sampling different attributes in X is 1.
From s — spin, we know that pg—sam is a linear function of s, and
larger s infers a larger p,—sam. This is justified because a higher
s implies that the attribute is more popular in the neighborhood
“Va—hop, and thus we are more likely to sample it. This strategy is
visualized in Fig. 3. We set the weight of the newly added attribute
to that of the removed one.

Remove Edges When removing edges, we aim to retain impor-
tant edges and remove the uninformative ones. We evaluate the
importance of an edge by the node it connects on the lower end,
since the edges propagate the attributes from the low-level nodes
to the higher ones and finally to the central node. Removing an
edge deletes a path for the node on its lower end to transmit its
attributes to the center. Suppose the degree of the node on its lower
end is dj,,,. We define the score of an edge as

se = log(djow), ™

because a node of a larger degree tends to be more influential.
For example, a famous person in a social network tends to have
numerous followers. We use the function log(-) but not a linear
one because the node degrees in a graph can vary across orders of
magnitudes, such as in a scale-free network [10], while the node
degree does not indicate the importance as significantly as the
attribute weight, on which we apply the linear function directly as
shown in Eq. (5). Suppose the maximum and average edge scores

‘El_)max ‘El_)ave respectively. We set the probability

Pa-sam =

onlevel [ are s and s

A
3 compute loss A

compute lossa
A i

_

- lsubgraph
mini-batch

(b) Subgraph Mini-Batch

(a) Full-Batch Training

Figure 6: (left) The full-batch training method takes the
whole graph as the input at each training step, although
only the final-layer semantic representations of a few nodes
contribute to the loss computation, of which the receptive
fields are much smaller than the whole graph. (right) Our
subgraph mini-batch approach extracts the subgraphs cor-
responding to the receptive fields of the considered nodes,
and batches the subgraphs as the input at each training step.

of removing the edge with score s, on level I to

58 = Se
Pe-rem = min (pl%, l) 5 (8)
Se—max ~ Se—ave
An example of this strategy with p = 0.3 is illustrated in Fig. 4.
Similar to pg—rem defined in Eq. (5), pe—rem is a truncated linear
function negatively related to s.. The difference is that in Eq. (8),
the level index [ influences pe—rem. The distant edges (larger [) tend
to be less informative, so we are more likely to remove it (higher
Pe—rem)~
Add Edges We add edges between the central node and some
on levels 2 and 3, which are not connected to the central one di-
rectly, but potentially have important information for predicting
the central node. For example, in a citation network, paper A cites B
because it uses a method M introduced in B. However, M is not the
main contribution of B, and it is paper C cited by B that proposes M.
Then, adding an edge between A and C augments the input features
of A without changing its label. Similar to the edge score s, defined
in Eq. (7), we define the score for a node of degree d as s, = log(d).
Denote the minimum, maximum and average node scores on level
las Sr(zl—)min’ s,(,l,)max, and s,(ll,)ave respectively. We set the probability
of adding an edge between the center and the node with score s,
on level I to

_.D
= min P _5n 7 Spn-min 1 (9)
Pe-add = i 3(1) D) >4

n—ave ~ Sp_min

A larger p incurs the higher probability p,_,q44 for all the nodes on

levels 2 and 3, i.e., larger DA magnitude. (s,(ll,)ave - sr(ll_)mm) acts as

a normalization term, so that p,_,44 falls into the range between 0

(O )
and 11—’ W Sn =S, i, Shows that p,_ 444 is locally a linear

Sn-ave ~Sp _min



function for the weight w. pg—rem increases as s, increases, because
those important nodes tend to be connected directly. The function
min(-, 1) ensures p,_ 44 is a valid probability value between 0 and
1. The distant nodes (larger [) tend to be less important, so we are
less likely to build connections for it (smaller p,_,44). An example
of this strategy with p = 0.3 is illustrated in Fig. 5.

Discussion We compare our DA strategies on graph data to
those for images and texts, which have shown effective perfor-
mance. Cutout [8] is a simple yet effective DA approach for aug-
menting images, which randomly masks out some regions of the
input. Removing edges, as shown in Fig. 4, is similar to Cutout,
in the sense that it blocks some nodes from propagating their at-
tributes to the central one. Shearing and Resizing an image [2]
changes the orders in which the neural networks do convolutions.
This is similar to adding edges for the central node, in the sense
that the added edges change the structures of graph convolutions.
TF-IDF based word replacement [31] replace the uninformative
keywords of a document with the keywords of other documents. It
is similar to our attribute replacement approach, in the sense that
both of them augment bag-of-word features, while ours additionally
takes the graph structural information into consideration.

3.3 Subgraph Mini-Batch Training

Most prior works on semi-supervised node classification feed the
whole graph to GCN models for training, a.k.a., full-batch training.
It computes the supervised loss for all the labeled nodes at each
step, but causes excessive resource requirements when dealing with
large-scale graphs, which limits the practical applications of GCNs.
With NodeAug, since each node has a separate augmented graph,
processing all the augmented graphs as a full-batch aggravates the
limitation further.

In this work, we propose a subgraph mini-batch training method
to address the resource problems for large graphs. From Eq. (2), we
know that to classify node i, we only need to take the subgraph G;
corresponding to the receptive field of node i as the input, which is
generally much smaller than the whole graph. At each training step,
only the predictions of the nodes in the batch contribute to the loss
computation, e.g., an augmented node in each augmented graph
for L. Thus, extracting the subgraphs for them to form a batch
as the inputs can significantly reduce the resource requirements
during training, as visualized in Fig. 6. The extraction step can
be completed efficiently with existing algorithms. For instance,
with the models of GCN, GAT, LGCN, etc., the receptive field of a
node is its neighborhood within a constant number of hops, which
can be obtained by breadth-first search [20]. This ensures that our
subgraph mini-batch method is convenient to be implemented on
miscellaneous platforms [4].

Compared with full-batch training, our subgraph mini-batch
approach holds advantages in its flexibility, generalization, and re-
source occupation. Ours takes the subgraphs of a flexible number of
nodes as the input, while the full-batch method processes the whole
graph at each step. In addition, with the mini-batch training, GCNs
are likely to converge to better generalization performance [16].
Moreover, in terms of the space complexity, the memory occupation
of our method is constant with the fixed batch size, while that of
the full-batch technique grows with the graph size. For NodeAug,

Table 1: Statistics of the utilized datasets

Dataset | # Nodes #Edges #Classes # Attributes
Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
Co-CS 18,333 81,894 67 6,805
Co-Phy 34,493 247,962 5 8,415

at each training step, we extract the receptive field subgraphs of
a batch of the augmented nodes for the consistency loss £, and
those of the labeled nodes for the supervised loss Lg. The former
extraction is conducted on both the original and augmented graphs,
while the latter one is done only on the original graph.

4 EXPERIMENTS

In this section, we first present the effectiveness improvements over
various GCN architectures given by NodeAug. Next, we analyze the
benefits in terms of memory and time costs due to our subgraph
mini-batch method. Then, the losses, accuracy, and the final-layer
representations of GCNs with NodeAug are visualized compared
with GCN without NodeAug. Finally, we conduct ablation studies
to show the influence of different components of NodeAug, as well
as the sensitivity with respect to the hyper-parameters of NodeAug.

We use standard benchmark datasets: Cora, Citeseer, Pubmed
[19], Coauthor-CS (short as Co-CS) and Coauthor-Physics (short as
Co-Phy) [24] for evaluation. The former three are citation networks,
and the latter two are co-author networks. Each of them contains
an unweighted adjacency matrix and bag-of-words features. The
statistics of these datasets are presented in Table 1. We take the
popular GCN architectures of GCN [17], GAT [26], LGCN [13],
and Graph U-Net [12] as the models to be enhanced by NodeAug.
We additionally use the methods GMNN [22], GraphVAT [11], and
GraphMix [28] as baselines for comparison.

For the hyper-parameters of different GCN architectures, e.g.,
the number of layers, the number of hidden units, the optimizer,
the learning rate, we set them as suggested by their authors. For
the hyper-parameters of our NodeAug, We set p = 0.3 for the
magnitude of our DA techniques, and a = 1 for the weight of the
consistency loss by default. At each training step, we randomly
sample 5 nodes from the labeled ones for the supervised loss, and
64 from all the nodes for the consistency loss to form a batch.

4.1 Semi-Supervised Node Classification

We conduct the experiments on different datasets with both stan-
dard splits and random splits. The datasets Citeseer, Cora, and
Pubmed hold the standard splits [17], [32] that are widely utilized
in different works, where 20 nodes per class form the labeled nodes
in the training set, 500 nodes are used for the validation and 1000
nodes for testing. We present the results on the standard splits in
Table 2. We report the mean accuracy and the standard derivations
of 100 runs with random weight initialization. We observe that
NodeAug improves the popular GCN models GCN, GAT, LGCN,
and Graph U-Net by a significant margin in terms of the test accu-
racy. Specifically, on Cora, Citeseer, Pubmed, it enhances the strong
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Figure 7: The training curves of NodeAug and GCN on the standard split of Cora dataset.

Table 2: Results of node classification on the standard splits
in terms of test accuracy (%). We report mean and standard
derivations of 100 trails with random weight initialization.

Method ‘ Cora ‘ Citeseer ‘ Pubmed
GCN [17] 81.5 70.3 79.0
GAT [26] 83.0 72.5 79.0
LGCN [13] 83.8 73.0 79.5
Graph U-Net [12] 84.4 73.2 79.6
GMNN [22] 83.7 73.1 81.8
GraphVAT [11] 82.9 73.8 79.5
GraphMix (GCN) [28] 83.9 74.5 81.0
GraphMix (GAT) [28] 833 73.1 81.1
NodeAug + GCN 84.3+£0.5 74.9+0.5 81.5+£0.5
NodeAug + GAT 84.8+0.2 75.1+£0.4 81.6+0.6
NodeAug + LGCN 85.8+0.5 75.5+0.5 | 81.8+0.3
NodeAug + Graph U-Net | 86.2+0.5 | 75.4+0.8 | 82.1+0.4

LGCN [13] and Graph U-Net [12] models by 2.4%, 2.9%, 2.8%, and
2.1%, 2.5%, 2.9% respectively. Meanwhile, it outperforms the current
state-of-the-art methods by 2.1% (over Graph U-Net), 1.2% (over
GraphMix with GCN), and 0.4% (over GMNN) on the three datasets
respectively.

We highlight two points in this set of results. First, GraphVAT
and GraphMix are both the consistency training approaches de-
signed for GCNs. The authors of the former one gives the results
for GCN, while the latter one presents those for both GCN and GAT.
Over both GCN and GAT, NodeAug achieves higher improvements
on the test accuracy than GraphVAT and GraphMix. The reasons
are as follows. We design NodeAug inspired by UDA with our pro-
posed ‘parallel-universe’ DA scheme, where UDA through its use
of DA is more effective than VAT and MixMatch (as discussed in
Sec. 2), which are the bases of GraphVAT and MixMatch respec-
tively. Moreover, NodeAug modifies both the node attributes and
the graph structure, while GraphVAT and GraphMix only inject
noise to the node attributes. Second, GAT is thought of as an ad-
vanced variant of GCN. However, GraphMix does not improve GAT
as effectively as GCN, while NodeAug does. This is explained by the
cousin network in GraphMix: this extra structure may not fit the
advanced GCN models well. Our NodeAug is succinct without the

extra architecture, which helps NodeAug to enhance the advanced
GCN models consistently.

The second set of experiments is on the random splits. We ran-
domly select K € {5, 10} nodes per class to form the training set,
and the same number of samples for the validation. All the remain-
ing ones are put into the testing set. We make 20 random splits and
conduct the experiments for 100 trials with random weight initial-
ization for each split. We present the accuracy on the random splits
in Table 3. Empirically, NodeAug outperforms the benchmark meth-
ods on enhancing the performance of GCN for different sizes of the
training set. In principle, with less labeled nodes, i.e., smaller K, our
method gives larger accuracy improvements, because NodeAug uti-
lizes the massive unlabeled nodes with our advanced DA techniques
for the consistency training.

4.2 Subgraph Mini-Batch Training

We evaluate the performance of our subgraph mini-batch training
method using the Co-Phy dataset, which is the largest one among
the 5 datasets. We follow the experimental setting of the random
splits with the number of labeled samples per class K = 5, as intro-
duced in the last subsection. The methods we evaluate include: GCN
with the full-batch training, GCN with NodeAug using our sub-
graph mini-batch training (NodeAug;,;), and GCN with NodeAug
using the full-batch training (NodeAug ;). NodeAug r,,j; puts all
the augmented graphs and the original graph into a single batch
in each training step to compute the loss. The average numbers of
nodes and edges processed at each training step are reported in Ta-
ble 4, where the running time is the training time until convergence
using a single 1080Ti GPU. We notice that our subgraph mini-batch
method significantly reduces the number of the edges and the nodes
processed at each iteration. Compared with GCN, the data volume
that NodeAug,,;, processes at each training step is smaller, and the
running time that it consumes is shorter, since only the data within
the receptive fields are processed, out of which the data do not
contribute to the loss computation. Because NodeAug,,;; needs to
process too much data per iteration for us to feed them into the
GPU, its running time and test accuracy are unavailable (denoted
as N.A.). In terms of effects on the generalization of the subgraph
mini-batch method, we cannot evaluate it from Table 4, since the
accuracy from NodeAugy,,; is absent. But we apply the subgraph



Table 3: Results of node classification with the random splits of the varied number K of labeled examples per class, in terms
of test accuracy (%). We report mean and standard derivations of 2000 trials on 20 splits with random weight initialization.

Method Cora Citeseer Pubmed Co-CS Co-Phy

K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10
GCN [17] 65.9+£3.5 72.3+2.2 | 55.8%+4.1 64.8+2.9 | 64.9+4.5 75.2%1.1 72.1+3.2  83.7£3.1 73.3+4.2  85.2+3.4
GraphVAT [11] 68.6+4.2  75.7£3.7 | 56.9+£5.3  66.2+2.7 | 66.4+3.7 75.9+2.6 | 73.1+£53  84.2+2.8 | 74.5£5.7 85.7+4.2
GraphMix (GCN) [28] | 71.2+6.1  79.2+2.3 | 58.844.3 71.0+1.7 | 67.1+4.4 76.6+£3.7 | 74.9+39 86.3+3.4 | 76.1+3.3 87.1+1.8
NodeAug + GCN 74.5+2.9 81.1+1.4 | 61.9+3.1 71.8+2.5 | 69.3+3.5 77.4+1.7 | 76.2+2.6 86.9+1.2 | 77.6+3.8 87.7+2.6

Table 4: Results of node classification with the random
splits of 5 labeled examples per class on the Co-Phy dataset.
The methods GCN and NodeAug (with GCN) are com-
pared. For the fair comparison, we apply the full-batch
training method, employed by GCN, to NodeAug, denoted
as NodeAugy, ;. Accordingly, NodeAug with the subgraph
mini-batch training is NodeAug;,;. We report mean values
of 2000 trials on 20 splits with random weight initialization.

Method ‘ # Nodes ‘ # Edges ‘ Time ‘ Accuracy (%)
GCN 34,493 | 247,962 | 373s 73.3
NodeAug sy | 1.2%10° | 8.6x10° | N.A. N.A.
NodeAugy,, | 4912 | 6862 | 39s | 77.6

mini-batch training for the original GCN and show the results in
Table 5, which is analyzed later.

4.3 Visualization of NodeAug

We study the effects of NodeAug on GCN during training. We depict
the supervised loss, consistency loss, and test accuracy at each
training epoch in Fig. 7 on the standard splits of Cora dataset. As
we can see, the supervised loss on the labeled nodes still converges
to a low value under NodeAug, although NodeAug spends extra
efforts on minimizing the consistency loss on all the nodes.

In addition, we observe that the consistency loss for both NodeAug
and GCN grows at the first stage of training, because initially, the
classifier predicts different nodes nearly randomly, inducing small
divergence of classification results with respect to our DA actions.
After training for more iterations, the gap of the consistency losses
between NodeAug and GCN becomes large. NodeAug effectively
inhibits the increase of the inconsistent behaviors of the classifier
given the data augmentation, and thus converges to better test
accuracy.

In Fig. 8, we visualize the final-layer representations of NodeAug
and GCN via t-SNE [3]. NodeAug makes the learned representations
for the nodes in the same class more concentrated than GCN, which
potentially improves the classification performance of GCN.

4.4 Ablation Study

We evaluate the contributions of different components of NodeAug.
We apply different techniques of NodeAug incrementally on GCN.
The results are presented in Table 5. The second row (+ Subgraph
Training) means that we apply our subgraph mini-batch training
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Figure 8: The final-layer representations of the nodes in
the Cora dataset (visualized by t-SNE [3]). Colors denote the
ground-truth class labels.

Table 5: Effects of different components of NodeAug evalu-
ated on the standard split of the Cora dataset.

Technique ‘ Accuracy (%) ‘ A ‘ Cumu A
GCN 81.5 0 0

+ Subgraph Training 81.7 +0.2 +0.2

+ Replace Attr. 82.3 +0.6 +0.8

+ Remove Edges 83.2 +0.9 +1.7

+ Add Edges 84.3 +1.1 +2.8

method to GCN without the consistency training, i.e., we extract
the subgraphs of a batch of labeled nodes as the input at each
training iteration. Although we do not use consistency training
on GCN, the mini-batch training method makes GCN converge
to better generalization, and thus achieves improvements on the
test accuracy. With the consistency training and the advanced DA
techniques, the performance of GCN is enhanced further. Among
different DA techniques, it is shown empirically that adding edges
can lead to the largest benefits. In addition, from the third row for
the Attribute Replace DA technique, we know that only changing
the attributes of the node is not as effective as the strategy that
additionally augments the graph structure. This agrees with our
first insight obtained from Eq. (1).

Finally, we investigate the sensitivity of NodeAug to the hyper-
parameters: p to control the DA magnitudes, and « to adjust the
weight of consistency loss. The result is visualized in Fig. 9. We
alter p among {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and @ among
{0.1,1, 10, 102, 103}. As we can see, the accuracy of NodeAug with
GCN is relatively smooth when parameters are within certain
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Figure 9: The test accuracy (z-axis) of NodeAug with GCN on
the standard splits of the datasets Cora and Citeseer with
different hyper-parameters p and a.

ranges. However, extremely large values of p and « results in low
performances on both datasets, which should be avoided in practice.
Moreover, increasing p from 0.1 to 0.3 improves the accuracy of
both datasets, demonstrating that diverse changes given by our DA
techniques can improve the performance of GCN.

5 CONCLUSION

In this paper, we study the problem of exploring Data Augmen-
tation techniques to strengthen the GCN models by consistency
training. We propose a novel methodology named NodeAug, which
conducts DA for different nodes individually and separately, to
coordinate DA for different nodes. NodeAug is a generic framework
that can use any DA strategies to enhance GCN models. In our
work, considering the distances between DA actions and the node
to be augmented, we propose three DA techniques on the graph
data by adjusting both the node attributes and the graph structure.
To use NodeAug efficiently, we take the subgraphs corresponding to
the receptive fields of a batch of nodes as the input at each training
step, inducing better effectiveness and efficiency compared with
the prior full-batch training method. Our experimental results show
that NodeAug, with our DA techniques, yields significant gains for
semi-supervised node classification. Future work could introduce
other advanced DA strategies to enhance our approach.
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A MORE DETAILS ABOUT EXPERIMENTS
FOR REPRODUCIBILITY

In this section, we describe more detailed settings about the experi-
ments to help in reproducibility.

A.1 Datasets and Software Versions

We download the Cora, Citeseer, and Pubmed datasets from the
website!, and the Coauthor-CS and Coauthor-Physics datasets from
the websiteZ. The latter two datasets are based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge, although the
original link of the datasets is currently invalid®. For all the datasets,
we follow the transductive setting, i.e., we use the attributes of all
the nodes and the labels of only the nodes in the training set for
the training.

Regarding software versions, we install CUDA 10.0 and cuDNN
7.0. TensorFlow 1.12.0 and PyTorch 1.0.0 with Python 3.6.0 are used.
Note that all the experiments are running a Linux Server with the
Intel(R) Xeon(R) E5-1650 v4 @ 3.60GHz CPU, and the GeForce GTX
1080 Ti GPU.

A.2 Settings of the Baseline

GCN. When implementing GCN as the benchmark and implement-
ing it with NodeAug, we utilize the early stopping training strategy:
stop optimization if the validation loss is larger than the mean of
validation losses of the last 10 epochs. We set the maximum number
of epochs as 200. The number of layers is 2. We apply the dropout
on the semantic representations of the first layer. The dropout ra-
tio is 0.5. The number of hidden units is 16. The #; regularization
weight is 5 X 107*. The Adam SGD optimizer is used. The Glorot
initialization is used for all the variables. The row normalization is
applied to the node attributes before being fed into the model. For
the GCN as a benchmark, we use the full-batch training method,
with the learning rate of 0.01. For the GCN with NodeAug, we use
our mini-batch training, with the learning rate being linear scaled
to the batch size, given that the learning rate of the full batch is
0.01.

GAT. When implementing GAT as the benchmark and imple-
menting it with NodeAug, we utilize the early stopping training
strategy: stop optimization if neither the validation loss nor the
validation accuracy improves for 100 epochs. We set the maximum
number of epochs as 100000. The number of layers is 2. We ap-
ply the dropout on the inputs of both layers. The dropout ratio
is 0.6. The number of attention heads is 8, while the number of
features per head is 8. The #, regularization weight is 5 x 107 for
Cora and Citeseer, and 1 X 10~* for the other datasets. The Adam
SGD optimizer is used. The Glorot initialization is used for all the
variables. The row normalization is applied to the node attributes
before being fed into the model. For the GAT as a benchmark, we
use the full-batch training method, with the learning rate of 0.005
for the Cora and Citeseer datasets, and 0.01 for the other datasets.
For the GAT with NodeAug, we use our mini-batch training, with
the learning rate being linear scaled to the batch size, given that

!https://lings.soe.ucsc.edu/data
Zhttps://github.com/shchur/gnn-benchmark
3https://kddcup2016.azurewebsites.net/

the learning rate of the full batch is 0.005 for the Cora and Citeseer
datasets, and 0.01 for the other datasets.

LGCN. When implementing LGCN as the benchmark and im-
plementing it with NodeAug, we utilize the early stopping training
strategy: stop optimization if the validation accuracy does not im-
prove for 100 epochs. We set the maximum number of epochs as
1000. A GCN layer is used as the graph embedding layer. The di-
mension of the embedding output is 32. After that, 2 LGCL layers
are stacked for Cora, and 1 LGCL layer is used for Citeseer, Pubmed.
We apply the dropout on both input feature vectors and adjacency
matrices in each layer with the dropout rates of 0.16 and 0.999. The
¢, regularization weight is 5 X 107%. The Adam SGD optimizer is
used. The Glorot initialization is used for all the variables. The row
normalization is applied to the node attributes before being fed into
the model. For the LGCN as a benchmark, we use the full-batch
training method, with the learning rate of 0.1 for all the datasets.
For the LGCN with NodeAug, we use our mini-batch training, with
the learning rate being linear scaled to the batch size, given that
the learning rate of the full batch is 0.1 for all the datasets.

Graph U-Net. When implementing Graph U-Net as the bench-
mark and implementing it with NodeAug, we utilize the early stop-
ping training strategy: stop optimization if the validation accuracy
does not improve for 100 epochs. We set the maximum number of
epochs as 1000. Four graph pooling with GCN blocks is stacked. We
apply the dropout on both adjacency matrix and feature matrices in
each layer with the dropout rates of 0.8 and 0.08. The #; regulariza-
tion weight is 1x1073. The Adam SGD optimizer is used. The Glorot
initialization is used for all the variables. The row normalization is
applied to the node attributes before being fed into the model. The
trick on adding self-loops to each node is used for the adjacency
matrix. For Graph U-Net as a benchmark, we use the full-batch
training method, with the learning rate of 0.1 for all the datasets.
For the LGCN with NodeAug, we use our mini-batch training, with
the learning rate being linear scaled to the batch size, given that
the learning rate of the full batch is 0.1 for all the datasets.

GMNN. When implementing GMNN as the benchmark, we set
the maximum number of epochs as 100. Two GCN layers are stacked
with the number of hidden units to be 16. We apply the dropout
on the network inputs with the dropout rates of 0.5. The #; regu-
larization weight is 1 x 1073, The RMSProp optimizer is used with
weight decay as 5 x 10* The Glorot initialization is used for all the
variables. The row normalization is applied to the node attributes
before being fed into the model. We reweight each attribute of nodes
to 1 if the original weight is greater than 0. We use the full-batch
training method, with the learning rate of 0.05 for all the datasets.

GraphVAT. When implementing GraphVAT as the benchmark,
we utilize the early stopping training strategy: stop optimization
if the validation loss is larger than the mean of validation losses
of the last 10 epochs. We set the maximum number of epochs
as 200. The number of layers is 2. We apply the dropout on the
semantic representations of the first layer. The dropout ratio is 0.5.
The number of hidden units is 16. The £, regularization weight is
5% 10™%. The Adam SGD optimizer is used. The Glorot initialization
is used for all the variables. The row normalization is applied to
the node attributes before being fed into the model. We use the
full-batch training method, with a learning rate of 0.01. The hyper-
parameter € for the scale of virtual perturbations is searched in


https://linqs.soe.ucsc.edu/data
https://github.com/shchur/gnn-benchmark
https://kddcup2016.azurewebsites.net/

[0.01, 0.05, 0.1, 0.5, 1]; & for the weight of the virtual adversarial
regularizer is searched in [0.001, 0.005, 0.01, 0.05, 0.1, 0.5]; £ for the
scale to calculate approximation is in [1 X 107%,1x 1073, 1 x 10_4].

GraphMix. When implementing GraphMix as the benchmark,
we set the temperature T in sharpening as 0.1, and the number
of random perturbations K as 10. We conduct minimal hyperpa-
rameter search for « for the Beta distribution used in Manifold
Mixup training of the MLP, and the max-consistency coefficient y
which controls the trade-off between the supervised loss and the
unsupervised loss. When implementing GraphMix with GCN, we
utilize the early stopping training strategy: stop optimization if the
validation loss is larger than the mean of validation losses of the
last 10 epochs. We set the maximum number of epochs as 200. The
number of layers is 2. We apply the dropout on the semantic repre-
sentations of the first layer. The dropout ratio is 0.5. The number
of hidden units is 16. The ¢, regularization weight is 5 x 107%. The
Adam SGD optimizer is used. The Glorot initialization is used for all
the variables. When implementing GraphMix with GAT, we utilize

the early stopping training strategy: stop optimization if neither
the validation loss nor the validation accuracy improves for 100
epochs. We set the maximum number of epochs as 100000. The
number of layers is 2. We apply the dropout on the inputs of both
layers. The dropout ratio is 0.6. The number of attention heads is 8,
while the number of features per head is 8. The #; regularization
weight is 5 X 10~ for Cora and Citeseer, and 1 x 10~% for the other
datasets.

We refer to the following websites when implementing the above
mentioned models:

(1) GCN: https://github.com/tkipf/gen

(2) GAT: https://github.com/PetarV-/GAT

(3) LGCN: https://github.com/HongyangGao/LGCN

(4) Graph U-Net: https://github.com/HongyangGao/Graph-U-

Nets
(5) GraphVAT: https://github.com/fulifeng/GraphAT
(6) GraphMix: https://github.com/vikasverma1077/GraphMix
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