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Abstract. Graph Convolution Networks (GCNs) are a powerful ap-
proach for the task of node classification, in which GCNs are trained
by minimizing the loss over the final-layer predictions. However, a limi-
tation of this training scheme is that it enforces every node to be classified
from the fixed and unified size of receptive fields, which may not be op-
timal. We propose ProSup (Progressive Supervision), that improves the
effectiveness of GCNs by training them in a different way. ProSup super-
vises all layers progressively to guide their representations towards the
characteristics we desire. In addition, we propose a novel technique to
reweight the node-wise losses, so as to guide GCNs to pay more attention
to the nodes that are hard to classify. The hardness is evaluated progres-
sively following the direction of information flows. Finally, ProSup fuses
the rich hierarchical activations from multiple scales to form the final
prediction in an adaptive and learnable way. We show that ProSup is ef-
fective to enhance the popular GCNs and help them to achieve superior
performance on miscellaneous graphs.

Keywords: Graph Convolutional Networks · Progressive Supervision ·
Node Classification

1 Introduction

Node classification is a fundamental task on graph data, which aims to classify
the nodes in an (attributed) graph [14]. For this task, Graph Convolutional
Networks (GCNs) have achieved state-of-the-art performance [23]. Typically,
GCNs follow a multi-layer structure (see Fig. 1(a)). Across layers, GCNs update
node representations via the ‘message-passing’ mechanism, i.e., they aggregate
the representations of each node and its neighbors to produce new ones at the
next layer. Denote the subgraph contributing to a node’s representation as its
receptive field. From bottom to top, the receptive field expands gradually, which
is generally a node’s l-hop neighborhood at the lth layer [19].

For training GCNs, it is common to minimize the classification loss on the
final-layer predictions. This training scheme is convenient, but not necessarily
ideal for effectiveness. One limitation is that it enforces GCNs to classify all
nodes from the unified size of receptive fields, but nodes can have diverse ‘ap-
propriate’ receptive fields for classification [24]. In a social network, for example,
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famous people include much noise with a small number of layers (hops), while
freshmen may need more layers to include the relevant features. Another limita-
tion is about the discriminativeness of learned features. [13] demonstrates that
a classifier will perform better when trained on more discriminative features.
However, minimizing the loss only on the final-layer predictions ignores the dis-
criminativeness of hidden layers and may degrade the performance.

The central idea of this paper is to make predictions separately on each layer
and progressively supervise hidden layers from bottom to top (see Fig. 1(b)).
We encapsulate this idea in a new scheme, called ProSup (short for Progressive
Supervision), that produces the side-outputs on hidden layers, and then fuse
the multi-level, multi-scale activations to form the unified prediction. With our
design, a node is classified at a side-output from an ‘appropriate’ receptive field
instead of absorbing extra noise when propagating its representation to the final
layer. Besides, our supervision over hidden layers acts as a kind of regularization.
It regularizes hidden layers to produce discriminative and meaningful represen-
tations, rather than supervises only the final-layer representations. Note that
ProSup can be incorporated into popular GCN architectures, e.g., GCN [11],
LGCN [8], GraphSAGE [9], etc., for better effectiveness.

Each layer has some nodes easy to classify and some hard ones (see Fig. 2).
To leverage the information of classification hardness, we propose a technique to
progressively reweight the node-wise losses. Following the direction of informa-
tion flows, we encourage GCNs to pay more attention to hard nodes. In principle,
we give the nodes, that are classified incorrectly at a layer, larger weights at the
next layer. This technique facilitates communication across GCN layers to mine
the hard nodes progressively. In terms of gradient propagation, ProSup simul-
taneously minimizes the classification losses on the side-outputs and the fused
prediction. The former propagates the local errors to the corresponding layer,
while the latter directly supervises all layers globally. We use both of them to
train the model holistically so as to produce discriminative representations and
the finer fused prediction.

We evaluate ProSup on the node classification task using the Citeseer, Cora,
Pubmed [14], Flickr [15], Yelp [25], and Reddit [9] datasets. Qualitatively, ProSup
makes the class-specific representations more concentrated (see Fig. 4). We also
observe quantitative improvements evaluated by test accuracy and F1-micro
scores. Overall, ProSup improves the popular GCN [11], LGCN [8], GraphSAGE
[9] and GraphSAINT [25] models by a significant margin, and enhances them to
outperform the benchmark methods. As we analyze, our ProSup improves the
effectiveness of GCNs without changing the time complexity.

2 Related Work

Due to the long history of Graph Neural Networks, we refer readers to [23] and
[27] for a comprehensive review. The first work that proposes the convolution
operation on graph data is [2]. More recently, [11] and [7] speed up the graph
convolution operations by introducing localized filters based on Chebyshev ex-
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Fig. 1: ProSup applied to node classification. (a) Standard GCN takes an
input graph and yields predictions on the final layer, where the loss is calculated.
(b) ProSup supervises hidden layers progressively and fuses the outputs from
multiple layers to produce the unified prediction. We minimize the classification
losses on both the side-outputs and the unified output simultaneously.

pansion. Specifically, [11] has made breakthrough advancements in the task of
node classification. As a result, the model proposed in [11] is generally denoted as
the vanilla GCN, or GCN. After [11], numerous GCN methods are proposed for
better performance on node classification. There are two main lines of research
in this field. The first one is to propose new GCN architectures to improve the
model capacity. The second is to propose mini-batch techniques for GCNs to
achieve better scalability without loss of effectiveness.

To improve the model capacity, [21], [26], and [10] use the attention mecha-
nism to better capture neighbor features by dynamically adjusting edge weights.
Mixture Model Network (MoNet) [16] adopts a different approach to assign edge
weights. It introduces node pseudo-coordinates to determine the relative posi-
tion between a node and its neighbors, then defines a weight function to map the
relative positions to edge weights. [28] utilizes the positive pointwise mutual in-
formation (PPMI) matrix to capture nodes co-occurrence information through
random walks sampled from a graph. [12] combines PageRank with GCNs to
enable efficient information propagation. [22] alternatively drives local network
embeddings to capture global structural information by maximizing local mu-
tual information. [4] proposes a non-uniform graph convolutional strategy, which
learns different convolutional kernel weights for different neighboring nodes ac-
cording to their semantic meanings. LGCN [8] ranks a node’s neighbors based
on node features. It assembles a feature matrix that consists of its neighborhood
and sorts this feature matrix along each column. [18] proposes GMNN to model
the dependency of object labels through statistical relational learning.

Another line of research focuses on scaling GCNs to large graphs efficiently
and effectively. GraphSAGE [9] performs uniform node sampling on the previ-
ous layer neighbors. It enforces a pre-defined budget on the sample size, so as
to bound the mini-batch computation complexity. [5] further restricts neighbor-
hood size by requiring only two support nodes in the previous layer. Instead of
sampling layers, ClusterGCN [6] and GraphSAINT [25] build mini-batches from
subgraphs, so as to avoid the ‘neighbor explosion’ problem.
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(a) Diverse ‘Preferences’
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(b) Layer 1 - Layer 2
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(c) Layer 2 - Layer 3

Fig. 2: GCN layers have diverse ‘preferences’ on node classification. (a)
GCN layers produces various node representation, which lead to various optimal
decision boundaries (red lines). (b, c) Descending order of the node-wise losses
in Citeseer. (b) Each point represents a node. x-value is the node order on layer
1, and y is for layer 2. (c) is similar for layers 2 (x) and 3 (y). If the ‘preferences’
are the same, all the points in (b) and (c) concentrate on the line of x = y.

Our work is orthogonal to the two lines above in the sense that it neither
alters the GCN architecture for better capacity nor introduces a new mini-batch
technique. We propose a new scheme that takes a GCN architecture as the
backbone to enhance its effectiveness without changing the time complexity.
Meanwhile, existing mini-batch techniques can be applied to our scheme for
better scalability. Our scheme is inspired by deeply-supervised nets [13], that
perform deep supervision to ‘guide’ early classification results. We find that the
favorable characteristics of feature representations provided by ProSup lead to
more accurate predictions.

3 Methodology

In this section, we describe our proposed ProSup scheme for node classification.
We first introduce the background and mathematical notations. Next, we intro-
duce the modules of ProSup, including the GCN backbone, the side network,
and output fusion, as illustrated in Fig. 1(b). Finally, we analyze why ProSup
can improve the performance of GCNs.

3.1 Background and Motivation

We define a graph as G = (V, E), where V denotes the set of nodes, and E is the
set of edges. The input feature vector of node i is xi, and the neighborhood of
node i is Vi = {j ∈ V| (i, j) ∈ E}. Suppose the representation of node i at layer

l is h
(l)
i . Typically, a GCN layer obtains h

(l)
i as:

h
(l)
i = AGGREGATE

(
h
(l−1)
i ,

{
h
(l−1)
j , j ∈ Vi

}
,W(l)

)
, (1)
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where W(l) denotes the trainable weights at layer l, and AGGREGATE is an

aggregation function defined by the specific GCN model. h
(0)
i = xi holds at the

input layer.

For the task of node classification, GCNs learns the high-level semantic rep-
resentations by stacking L layers and minimizing the loss, e.g. cross entropy [1],
over the final-layer outputs, as presented in Fig. 1(a). Denote the subgraph con-
tributing to a node’s representation as its receptive field, which is generally a
node’s l-hop neighborhood at layer l [19]. However, it has been found that in-
creasing L does not necessarily improve the effectiveness of GCNs, even though
it expands the receptive fields for classification. Popular GCN models observe
empirically optimal performance with a small L, e.g. 2 or 3 [11]. A reason is
that nodes have diverse ‘appropriate’ receptive field sizes for effective classifica-
tion [24]. Larger receptive fields can introduce extra noise, while smaller ones
miss valuable information. In addition, each GCN layer has some nodes easy
to classify and others hard. Hence, a GCN layer may be effective at classifying
some nodes, but not others. This ‘preference’ varies with l, i.e., various recep-
tive fields, as shown in Fig. 2. Thus, minimizing the classification loss on the
final-layer outputs, i.e., enforcing GCNs to classify all the nodes based on the
fixed and unified receptive field of L-hop neighborhoods, inevitably introduces
noise. The larger L is, the more noise is introduced, which may lead to decreased
accuracy.

In our work, we propose our progressive supervision (ProSup) scheme to en-
hance GCN models for node classification. As depicted in Fig.1(b), the core idea
is to supervise the feature maps on hidden layers progressively, and fuse the side-
outputs from multiple levels and multiple scales to produce the unified output
in an adaptive and learnable way. We combine the rich hierarchical responses,
that allow each node to be classified at its ‘appropriate’ receptive fields, from
different layers. For training, we minimize the classification losses over both the
side-outputs and the fused output simultaneously. Next, we introduce the details
of ProSup.

3.2 GCN Backbone and Side Network

We take an existing GCN model as the backbone, e.g., GCN, GAT, LGCN, etc.,
as shown in Fig. 1(b). This backbone typically has a multi-layer structure, of
which the aggregation mechanism is introduced in Sec. 3.1. We construct a side
network parallel to the GCN backbone for conducting progressive supervision.
Following the notations in Eq. (1), we denote node representations in layer l as
H(l) ∈ RN×dl , where N = |V| is the number of nodes, and dl is the dimension
of representations in layer l. As defined in Eq. (1), the representation of node i,

h
(l)
i , is the ith row of H(l). Accordingly, the input feature vectors xi form the

rows of X = H(0). We produce the side-outputs at layer l as:

A(l) = H(l)W
(l)
side, Ŷ(l) = σ

(
A(l)

)
, (2)
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where A(l), W
(l)
side ∈ Rdl×C , and Ŷ(l) ∈ RN×C are the activation, trainable

weights, and the prediction respectively. C is the number of classes. σ(·) is the
nonlinear activation function used to produce probabilities, which is softmax for
single-label classification and sigmoid for multi-label classification [1].

Unlike existing GCN architectures that produce outputs only at their final
layer, we build an output layer after each convolutional layer. The receptive fields
of these side-outputs become larger as l increases. Thus, we enable hidden layers
to produce predictions by themselves, instead of only contributing to the final-
layer prediction indirectly through feed-forward propagation. As a result, the
nodes that are easier to classify with a smaller receptive field are classified earlier,
rather than absorbing more noise through further aggregations. In addition,
the hidden layers are expected to produce more discriminative representations
through our direct supervision.

3.3 Output Fusion and Loss Function

To produce the unified prediction, we construct node-wise features by combining
(e.g., concatenating) the activations from multiple layers,

{
A(l)

}
l
. Given the

node-wise feature representation, we make node-wide class predictions using a
light-weight node head, implemented as a multi-layer perception (MLP). The
node head shares weights across all nodes, analogous to PointNet [17]:

A = δ
(
CONCAT

({
A(l)

}
l

)
W

(1)
fuse

)
W

(2)
fuse, Ŷ = σ (A) , (3)

where W
(1)
fuse ∈ RLC×dfuse ,W

(2)
fuse ∈ Rdfuse×C are the learnable weights for fus-

ing the multi-level activations, while A is the fused activation for the unified
output. δ(·) is the activation function, which we set as ReLU. During inference,

we take Ŷ as the unified prediction. During training, we supervise both the
side-outputs and the fused output. The loss on side-outputs is:

Lside = −
∑
l

∑
i∈VL

C∑
c=1

Yic log Ŷ
(l)
ic , (4)

where VL is the set of node indices that have labels in the training set, and Yic
is the binary ground-truth label value of node i. Yic = 1 indicates node i belongs
to class c, and Yic = 0, otherwise.

As for the fused prediction Ŷ, we calculate the loss:

Lfuse = −
∑
i∈VL

C∑
c=1

Yic log Ŷic. (5)

Putting these together, we minimize the following objective function:

L = Lfuse + αLside, (6)
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where α is the hyper-parameter for balancing Lfuse and Lside.
From the perspective of gradient propagation, minimizing Lside over a side-

output propagates the local errors to the corresponding layer, while minimizing
Lfuse propagates the global errors to all layers simultaneously. The former super-
vises each layer to generate semantically meaningful predictions and regularizes
GCNs to learn consistently discriminative representations across hidden layers.
This endows the final prediction with the higher quality given the better hidden
representations. Depending on the receptive field size, the side-output of any
single layer may be coarse. For example, lower layers have only localized fea-
tures, while higher layers may give over-smooth outputs [20]. Thus, we fuse the
(coarse) side-outputs to form the unified (fine) output. This process of combin-
ing multi-level and multi-scale activations is learnable and adaptive, by which
the final prediction of each node can be obtained from an ‘appropriate’ receptive
field.

3.4 Progressively Re-weighting Hard Nodes

At each layer, some nodes are easy to classify, while others are hard, as shown in
Fig. 2. Giving all the nodes the same weight in the loss function Lside can lose the
information on the classification hardness. To address this limitation, we design
a new scheme to progressively reweight the hard nodes. As shown in Fig. 1, on
the losses computed on side-outputs, from bottom to top, we conduct a node
re-weighting operation layer by layer. This bottom-up hierarchical mechanism
is inspired by the sequential information flow across hidden layers of GCNs.
For example, the third layer of the side network needs the feature map from the
second layer to compute the classification results and loss. If the lower layers can
inform the upper layers which nodes are hard to classify, the higher layers will pay
more attention to these hard nodes. Through this communication, hard examples
can be mined and classified more effectively from bottom to top, resulting in a
better fused prediction.

Specifically, given Ŷ(l) as the output from the l th layer of the side network,
we denote the differences of node i between the prediction on layer l and the
ground truth label as:

ξ
(l)
i =

C∑
c=1

∣∣∣Ŷ (l)
ic − Yic

∣∣∣ (7)

Then, we rewrite the loss function in Eq. (4) to:

Lside−reweight =−
∑
i∈VL

C∑
c=1

Yic log Ŷ
(1)
ic

−
L∑
l=2

∑
i∈VL

|VL|∑
i∈VL |ξ

(l−1)
i |

|ξ(l−1)i |
C∑
c=1

Yic log Ŷ
(l)
ic , (8)
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Algorithm 1 ProSup: progressive supervision for enhancing Graph Convolu-
tional Networks (GCNs) on node classification.

Input: Graph G = (V, E), Feature Matrix X, a GCN backbone with the aggregation
function AGGREGATE(·), hyper-parameter α for balancing losses, dfuse for the node
head, ground-truth labels Y, labeled nodes in the training set VL.

Output: Fused prediction Ŷ, trained parameters of the GCN backbone
{
W(l)

}
l
, and

trained parameters of ProSup,
{
W

(l)
side

}
l
, W

(1)
fuse, and W

(2)
fuse.

1: Initialize all parameters.
2: while L does not converge do
3: H(0) ← X
4: for l ← 1 to L do
5: for i ← 1 to |V| do
6: h

(l)
i ← AGGREGATE

(
h
(l−1)
i ,

{
h
(l−1)
j , j ∈ Vi

}
,W(l)

)
7: end for
8: A(l) ← H(l)W

(l)
side

9: Ŷ(l) ← σ
(
A(l)

)
10: for i ← 1 to |VL| do
11: ξ

(l)
i ←

∑C
c=1

∣∣∣Ŷ (l)
ic − Yic

∣∣∣
12: end for
13: end for
14: A← δ

(
CONCAT

({
A(l)

}
l

)
W

(1)
fuse

)
W

(2)
fuse

15: Ŷ ← σ (A)
16: Calculate Lside from Eq. (8)
17: Lfuse ← −

∑
i∈VL

∑C
c=1 Yic log Ŷic

18: L ← Lfuse + αLside

19: Back-propagation for minimizing L
20: end while

where |VL|∑
i |ξ

(l−1)
i |

|ξ(l−1)i | is the normalized node weight. |VL|∑
i |ξ

(l−1)
i |

helps to ensure

that, ∀ l, the average loss weight of all the labeled nodes in the training set is

1

|VL|
∑
i∈VL

|VL|∑
i∈VL |ξ

(l−1)
i |

|ξ(l−1)i | = |VL|
|VL|

∑
i∈VL

|ξ(l−1)i |∑
i∈VL |ξ

(l−1)
i |

= 1.

Thus, with the progressive re-weighting scheme, we leverage the predictions of
a shallower side network to weight loss terms in a deeper side network. This
facilitates communication among hidden layers and provide better activations
{Al}l for producing the final prediction effectively. We provide pseudo-code for
ProSup in Alg. 1.

3.5 Discussion

ProSup has several advantages over the classical GCN training scheme that
minimizes the loss on the final-layer outputs. With ProSup, different nodes have
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(a) Ground Truth (b) 1st layer w.o.
ProSup

(c) 2nd layer w.o.
ProSup

(d) 3rd layer w.o.
ProSup

(e) Fused Prediction (f) 1st layer w.
ProSup

(g) 2nd layer w.
ProSup

(h) Fused Layer w.
ProSup

Fig. 3: ProSup enhances GCN to provide better predictions. In the first
column, colors denote classes of nodes in the Cora dataset. (a) shows the ground
truth labels. (e) is the fused prediction given by GCN with ProSup. In the other
columns, colors denote the predicted score on the correct class. Colors closer
to red mean that the score is closer to 1 (correct). Otherwise, the blue color
corresponds to the score of 0 (incorrect). ProSup enhances GCN to provide
hidden layers with better predictions, improving the final prediction.

adaptively ‘appropriate’ receptive fields for classification, since the correspond-
ing hidden layers can produce the outputs by themselves rather than pass the
representations to the next layers, which may aggregate extra noise. Second, a
discriminative classifier trained on highly discriminative features will perform
better than that on less discriminative features [13]. By training the classifier
constructed at each hidden layer of a GCN, we are able to progressively influence
the weight update process of hidden layers to favor highly discriminative feature
maps. This is a source of supervision that acts within the GCN at each layer:
we expect the final classification predictions to be more reliable than the case of
relying on backpropagation from the final layer alone.

Moreover, ProSup can also be seen as a form of regularization, as GCN learns
consistently discriminative features among hidden layers instead of overfitting
the training data by minimizing the classification loss solely on the final layer.
Finally, in terms of explainability, ProSup provides a classifier for each hidden
layer to endow their representations with clear semantic information, rather than
treating GCNs as a black box with complicated and non-interpretable input-
output relations. An example of node classification by GCN with ProSup is
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Table 1: Statistics of the utilized datasets. ‘m’ stands for multi-label classifica-
tion, while ‘s’ for single-label.

Dataset Citeseer Cora Pubmed Flickr Yelp Reddit

#Nodes 3,327 2,708 19,717 89,250 716,847 232,965
#Edges 4,732 5,429 44,338 899,756 6,977,410 11,606,919
#Features 3,703 1,433 500 500 300 602
#Classes 7 (s) 6 (s) 3(s) 7 (s) 100 (m) 41 (s)

presented in Fig. 3. The predictions on a hidden layer of GCN without ProSup are
obtained by training a fully-connected layer using the learned representations.

4 Complexity Analysis

We train the model in the end-to-end style. The time complexity of GCN is

O
(
|E|
∑L
l=1 dl + |V|

∑L
l=1 dl−1dl

)
. With the side network, we have the time com-

plexity as O
(
|V|
∑L
l=1 dlC

)
. In the output fusion module, we have the complex-

ity O (|V|LCdfuse). Taking all the computation into consideration, we have the

complexity of O
(
|E|
∑L
l=1 dl + |V|

(∑L
l=1 dldl−1 + C (dl + dfuse)

))
. The com-

plexity is linear to |E| and |V|, same as in GCNs. Note that C < dl,∀ l holds
generally. Thus, using ProSup to improve the effectiveness of GCNs does not
increase their time complexity.

5 Experiment

In this section, we present the empirical improvements over various GCN ar-
chitectures achieved by ProSup. We report the experimental results under both
the transductive and inductive settings. In addition, we visualize the learned
representations of GCN with ProSup compared with the GCN without ProSup.
Finally, we conduct ablation studies to show the influence of different compo-
nents of ProSup, as well as the sensitivity with respect to the hyper-parameters
of ProSup.

We use standard benchmark datasets: Cora, Citeseer, Pubmed [14], Flickr
[15], Yelp [25], and Reddit [9] for evaluation. The former three are citation net-
works, where each node is a document and each edge is a citation link. In Flickr,
each node represents one image. An edge is built between two images if they
share some common properties (e.g. same geographic location, same gallery,
etc.). The Yelp dataset contains a social network, where an edge means that
the connected users are friends. Reddit is collected from an online discussion
forum where users comment in different topical communities. Two posts (nodes)
are connected if some user comments on both posts. Each dataset contains an
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Table 2: Test Accuracy (%) of transductive node classification. #Layers indicates
the best-performing number of layers among 1 to 8. We conduct 100 trials with
random weight initialization. The mean and standard derivations are reported.

Method #Layers Citeseer #Layers Cora #Layers Pubmed

GCN [11] 2 77.1±1.4 2 88.3±0.8 3 86.4±1.1
GAT [21] 2 76.3±0.8 3 87.6±0.5 3 85.7±0.7
JKNet-MaxPool [24] 1 77.4±0.6 6 89.5±0.8 3 86.5±0.9
JKNet-Concat [24] 1 78.1±0.9 6 89.1±1.2 4 86.9±1.3
JKNet-LSTM [24] 1 74.7±0.8 1 86.1±0.9 1 85.8±1.2
LGCN [8] 2 77.5±1.1 2 89.0±1.2 2 86.5±0.6
GMNN [18] 2 77.4±1.5 2 88.7±0.8 2 86.7±1.0

ProSup + GCN 3 79.3±1.2 4 90.8±0.7 4 88.2±0.8
ProSup + LGCN 3 79.6±0.7 3 91.2±0.8 3 88.5±0.5

unweighted adjacency matrix and bag-of-words features. The statistics of these
datasets are summarized in Table 1.

In the transductive setting, we have access to the features of all nodes but only
the labels of nodes in the training set for training. In the inductive setting, both
the features and labels of the nodes in the validation/testing set are unavailable
during training.

For the hyper-parameters of the benchmarks, e.g. the number of hidden units,
the optimizer, the learning rate, we set them as suggested by their authors. For
the hyper-parameters of our ProSup, we set dfuse = dL−1 for the dimensionality
of the output fusion module, and α = 1 for the weight of the loss from side-
outputs by default.

5.1 Transductive Node Classification

In the transductive settings, we take the popular GCN architectures of GCN
[11], GAT [21], LGCN [8], JKNet [24], and GMNN [18] as the baselines for
comparison. We split nodes in each graph into 60%, 20%, 20% for training,
validation, and testing. We make 10 random splits and conduct the experiments
for 100 trials with random weight initialization for each split.

We vary the number of layers from 1 to 8 for each model and choose the best
performing number with respect to the validation set. The results are reported
in Table 2. We observe that ProSup improves the test accuracy of GCN by 2.9%
on Citeseer, 2.8% on Cora, 2.1% on Pubmed, and LGCN by 2.7% on Citeseer,
2.5% on Cora, and 2.3% on Pubmed respectively. As a result, ProSup enhances
GCN and LGCN to outperform all the benchmark methods.

Taking a closer look, we observe that ProSup increases the number of layers
that GCN and LGCN need to achieve their best performance. The reason is that
more layers inevitably introduce extra noise for learning the final-layer represen-
tations. However, ProSup enables hidden layers to make outputs by themselves,
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Fig. 4: The learnt representations of the nodes in the Cora dataset (visualized
by t-SNE [3]). Colors denote the ground-truth class labels. ProSup (lower row)
makes class-specific representations more concentrated (than the upper row).

so the node-wise predictions are made with the ‘appropriate’ receptive fields.
Besides, in terms of the fitting capacity, more layers provide a larger fitting ca-
pacity. In this case, minimizing the loss solely on the final-layer prediction leads
to higher risks of overfitting, since it ignores the characteristics of representa-
tions of hidden layers. ProSup decreases this risk by regularizing GCNs to learn
consistently discriminative features among its hidden layers.

Fig. 4 presents the learned representations obtained by a 3-layer GCN and
a 3-layer GCN with ProSup. We can observe that the hidden layers supported
by ProSup learn more discriminative features consistently, thanks to the direct
supervision applied to them. These highly discriminative features potentially
help to produce better class predictions than less discriminative features.

5.2 Inductive Node Classification

In the inductive settings, we use the datasets Flickr, Yelp, Reddit with the fixed
partition [25] for evaluation. These datasets are too large to be handled well by
the full-batch implementations of GCN architectures. Hence, we use GraphSAGE
[9] and GraphSAINT [25] as the benchmarks for comparison, which are more
scalable. We implement ProSup with GraphSAGE-mean and GraphSAINT-GCN
to observe whether ProSup can improve the performance of GCNs under the
inductive setting.

We vary the number of layers of each method from 1 to 8 for each model
and choose the best performing model with respect to the validation set. The
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Table 3: Test F1-micro score (%) of inductive node classification. #Layers in-
dicates the best-performing number of layers among 1 to 8. We report mean
and standard derivations of 100 trials with random weight initialization. We
implement ProSup with GraphSAGE-mean and GraphSAINT-GCN.

Method #Layers Flickr #Layers Yelp #Layers Reddit

GraphSAGE-mean 3 50.1±1.1 2 63.4±0.6 3 95.3±0.1
GraphSAGE-LSTM 3 50.3±1.3 3 63.2±0.8 2 95.1±0.1
GraphSAGE-pool 3 50.0±0.8 3 63.1±0.5 2 95.2±0.1

ProSup + GraphSAGE 4 51.9±0.9 3 64.7±0.7 4 96.1±0.1

GraphSAINT-GCN 3 51.1±0.2 2 65.3±0.3 3 96.6±0.1
GraphSAINT-GAT 2 50.5±0.1 2 65.1±0.2 3 95.8±0.0
GraphSAINT-JKNet 4 51.3±0.5 3 65.3±0.4 4 97.0±0.1

ProSup + GraphSAINT 3 52.8±0.2 3 66.2±0.2 4 97.3±0.1

results are reported in Table 3. GraphSAGE-mean/LSTM/pool denotes that
GraphSAGE uses mean, LSTM, and max-pooling as the aggregator respectively.
GraphSAINT-GCN/GAT/JKNet denote GraphSAINT using GCN, GAT, and
JKNet as the base architecture respectively. We observe that ProSup improves
the test F1-micro scores of GraphSAGE-mean by 3.6% on Flickr, 2.1% on Yelp,
0.8% on Reddit, and GraphSAINT-GCN by 3.3% on Flickr, 1.4% on Yelp, and
0.3% on Reddit respectively. As a result, ProSup enhances them to outperform
the benchmark methods. Overall, the above results validate that ProSup is ef-
fective in improving the performance of the popular GCN models under both
transductive and inductive settings.

5.3 Ablation Study

We conduct a number of ablations to analyze ProSup. First, we investigate the
effects of the side network and the output fusion module. We compare the results
on the Flickr dataset of GraphSAINT and its variants combined with our pro-
posed techniques in Table 4. To obtain the classification results on hidden layers
of GraphSAINT-GCN, we train a fully-connected layer over the learned hidden
representations at every GCN layer. We observe that, with our side network, the
prediction results are better on every layer, which demonstrates that our pro-
gressive supervision can act as a form of regularization, which not only makes
the hidden representations more discriminative but also improves the quality
of the final-layer predictions. Moreover, with our module of output fusion, the
prediction performance of hidden layers is improved further, thanks to the addi-
tional global supervision. Finally, the fusion module fuses the coarse predictions
from hidden layers to form the finer final prediction.

Table 5 presents the performance of GCNs with and without our technique
of progressively re-weighting the hard nodes among hidden layers. Empirically,
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Table 4: F1-micro score (%) of inductive node classification on Flickr.

GCN GCN w. side network GCN w. ProSup

Layer 1 47.3 51.3 51.7
Layer 2 48.6 51.6 51.9
Layer 3 51.1 52.0 52.2

Fused Output - - 52.8

Table 5: Test Accuracy (%) of GCN on Citeseer, Cora, Pubmed and F1-micro
score (%) of GraphSAGE-mean on Flickr, Yelp, Reddit.

Citeseer Cora Pubmed Flickr Yelp Reddit

GCN + ProSup w.o Reweighting 78.9 90.5 88.0 51.1 64.3 95.9
GCN + ProSup w. Reweighting 79.3 90.8 88.2 51.9 64.7 96.1

(a) Citeseer (b) Cora (c) Pubmed (d) Flickr

Fig. 5: Test accuracy (% on z-axis) of GCN with ProSup on Citeseer, Cora,
Pubmed and F1-micro scores of GraphSAINT-GCN with ProSup on Flickr versus
values of hyper-parameters dfuse (x-axis) and α (y-axis).

this technique consistently improves the classification performance of GCN and
GraphSAGE over all datasets. This demonstrates that it is valuable to leverage
the hardness information implied by the predicted scores through different layers.
The re-weighting technique encourages communication among hidden layers so
as to improve the final predictions.

Finally, we evaluate how sensitive our ProSup is to the selection of hyper-
parameter values: dfuse to control the dimensionality of the node head in the
output fusion module, and α to adjust the weight of side-output loss. We visu-
alize the results in Fig. 5. As we can see, the performance of GCN with ProSup
is relatively smooth when parameters are within certain ranges. However, ex-
tremely large values of dfuse and α result in low performance on all datasets,
which should be avoided in practice. Moreover, increasing α from 0.01 to 1 im-
proves the test accuracy/F1-micro scores on all datasets, demonstrating that
the supervision progressively applied on hidden layers plays an important role
in improving the performance of GCNs.
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6 Conclusion

In this paper, we have developed a new graph convolutional network based node
classifier and demonstrated its superior performance on datasets comprising doc-
uments, images, friendships, and online discussion posts. Our scheme builds on
the idea of progressively supervising the hidden layers of GCNs. During training,
every hidden layer participates in the loss calculation directly to learn discrim-
inative features. In addition, We propose a reweighting technique to deal with
hard nodes by giving them larger loss weights in a progressive way. This en-
courages GCNs to pay more attention to hard nodes and thus make predictions
more effectively. Our method shows the effectiveness of predicting node-wise
labels by combining multi-scale and multi-level responses in an adaptive and
learnable way. Moreover, ProSup does not incur any change in the time com-
plexity of GCNs, as we analyze. An interesting future direction is to extend our
progressive supervision algorithm to other tasks on graph data, such as graph
classification, link prediction, personalized recommendation, etc.
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