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Abstract

Consider a stream of time-stamped events, such as taxi
rides, where we record the start and end locations of
each ride. How do we learn a matrix factorization model
which takes into account seasonal patterns (such as:
rides toward office areas occur more frequently in the
morning), and use it to forecast taxi rides tomorrow?
Also, how can we model drift (such as population
growth), and detect sudden changes (or anomalies)?
Existing matrix factorization algorithms do not take
seasonal patterns into account. We propose SMF
(Seasonal Matrix Factorization), a matrix factorization
model for seasonal data, and a streaming algorithm
for fitting it. SMF is (a) accurate in forecasting:
outperforming baselines by 13% to 60% in RMSE; (b)
online: requiring fixed memory even as more data is
received over time, and scaling linearly; (c) effective:
providing interpretable results. In addition, we propose
SMF-A, an algorithm which detects anomalies in a
computationally feasible way, without forecasting every
observation in the matrix.

1 Introduction

Consider a stream of events, represented as tuples
of the form (entity1, entity2, time). Given such
data, a natural goal is to model patterns, and to
forecast future data: for example, the number of taxi
rides from Brooklyn to Manhattan tomorrow. Other
similar applications includes disease forecasting, movie
recommendation, retweet prediction, etc. In all these
cases, seasonal patterns are present, and relevant to
making accurate forecasts. Hence, our problem is:

Informal Problem 1. (Forecasting)

• Given: a stream of past events, containing sea-
sonal patterns;

• Forecast: the number of events between each pair
of entities at any future time tick.

Another goal is to detect when anomalies occur.
These could involve a sudden increase in activity, but
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can also be any unusual shift in activity (e.g. a road
accident redirecting traffic from one lane to another).

Informal Problem 2. (Anomaly Detection)

• Given: a stream of past events, containing sea-
sonal patterns;

• Find: a measure of how much each entity deviates
from normal behavior at each time tick.

Standard matrix factorization approaches model
this data by ignoring the time dimension, resulting in
a matrix. However, these approaches ignore seasonal
patterns. Taxi activity typically follows a daily bimodal
pattern, peaking at morning and evening peak hours. In
addition, standard matrix factorization cannot capture
drift, or changes in the components over time: such
as population growth, or people entering or leaving a
community.

Scalability is also a major challenge, both in mem-
ory and running time, since matrix factorization often
involves large numbers of entities. The entire dataset
may not fit in memory, or may even have no finite
size, in an online setting. Hence, we propose SMF
(Seasonal Matrix Factorization), a drift-and-seasonality
aware matrix factorization model which can be fit using
an online algorithm. Our contributions are:

• Model: we propose a novel matrix factorization
model incorporating seasonal patterns and drift,
and an online algorithm for fitting this model.

• Effectiveness: in experiments, SMF has lower
forecasting error than baselines by 13% to 60%
(Figure 1a), and provides interpretable results in
case studies on real data.

• Scalability: SMF is online, and scales linearly
(Figure 1b). In experiments, it was 12 to 103 times
faster than seasonal baselines.

• Fast Anomaly Detection: we propose SMF-A
for detecting anomalies (Figure 1c) in a computa-
tionally feasible way, without forecasting every pos-
sible observation in the matrix.

Reproducibility: our code and datasets are pub-
licly available at www.andrew.cmu.edu/user/bhooi/

smf.
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Figure 1: SMF is accurate, scales linearly, and detects anomalies. (a) Forecast error of SMF compared
to state-of-the-art baselines. (b) Running time scales linearly. (c) SMF-A detects two large epidemics, which
have been previously reported in the medical literature, in a diseases dataset.

2 Background and Related Work

Static Matrix Factorization Matrix Factoriza-
tion (MF) techniques including SVD [17], NMF [15],
and pLSI [10] have been widely explored, particularly in
collaborative filtering [13, 14, 21]. Other work incorpo-
rated bias terms [13], and alternating least squares [2].

Dynamic Matrix Factorization Time-
weighting schemes weight past data by their
recency [7, 8]. Other approaches include tempo-
ral regularization [23] and Kalman filters [21, 3].
timeSVD++ [14] modifies SVD with a temporal bias
term. [6] uses dynamic MF with priors. [23] proposes
a Bayesian approach. [20] proposes a dynamic tensor
analysis algorithm. However, none of these consider
seasonal patterns.

Seasonal Patterns in Matrix Factorization
Fold [9] combines data at the same point in the sea-
son, then uses 3-way tensor decomposition (CPD). [22]
similarly separates recurring patterns from outliers.
CPHW [8] uses 3-way CPD, then extends the tempo-
ral factor matrix using the Holt-Winters algorithm. [5]
uses a similar approach, also incorporating coupled ten-
sor factorizations.

Why not use 3-way CPD? 3-way CPD [12]
treats the temporal dimension as a discrete, unordered
variable. Hence, it cannot be directly used for fore-
casting, and also does not model component drift. To
forecast, we could modify it, e.g. as in Fold or CPHW.
Compared to Fold and CPHW, which have fixed compo-
nents, SMF allows both the components and seasonal
patterns to drift: this includes both drifting compo-
nent strength (e.g. a community growing more active)
and drifting component structure (e.g. a community
changing in composition). We verify that SMF learns
meaningful such drifts in taxi data in Section 5.3, and
our experiments show that SMF outperforms Fold and
CPHW in forecasting accuracy. Another difference is
that both Fold and CPHW are offline algorithms, while
SMF is online.

Table 1: Comparison between methods.
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Drifting component strength 3 3 3

Drifting component structure 3

Online algorithm some 3 some 3

3 Model

Preliminaries The input data is a series of sparse
matrices A(t), t = 1, 2, · · · , r. For example, in the taxi
case, if there were 100 taxi rides from location i to
location j at time t, then the (i, j)th entry of A(t) is 100.
Table 2 shows the symbols used. For matrix indexing,
X(:, 1 : 2) is the submatrix of X with all its rows and
the first 2 columns.

Table 2: Symbols and definitions

Symbol Definition

A(t) m× n sparse data matrix at time t
m, n Number of rows and columns in A(t)

r Number of time steps
k Number of components

ui(t),vi(t) Factorization component i at time t
wi(t) (Scalar) seasonal multiplier i at time t
U(t) m× k matrix form of ui(t): U(t) = [u1(t) · · ·uk(t)]
V(t) n× k matrix form of vi(t): V(t) = [v1(t) · · ·vk(t)]
W(t) k × k diagonal matrix: W(t) = diag(w1(t), · · · , wk(t))

s Period (e.g. 7 for daily data with weekly periodicity)
α Gradient step size hyperparameter

z(t) Number of nonzeroes in A(t)
z Total number of nonzeroes: z =

∑r
t=1 z(t)

X(:, 1 : 2) Submatrix of X with all rows and first 2 columns

3.1 Proposed SMF Model To capture the desired
seasonality patterns, we introduce seasonal weights
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wi(t): wi(t) is a (scalar) multiplier that applies to
component i at time t. Thus:

A(t) ≈
k∑
i=1

ui(t)wi(t)vi(t)
T(3.1)

wi(t) will allow us to capture seasonal patterns, because
we will ensure that wi(t) itself is close to periodic over
time. Following Figure 2, in matrix notation this is:

A(t) ≈ U(t)W(t)V(t)T(3.2)

We model the data using smoothly varying components
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Figure 2: An illustration of our model. Section 4
explains how we model smoothness in U and V, and
seasonality in w.

u and v, and seasonally varying ‘multipliers’ w, which
govern the seasonal patterns in the data. This model
captures multiple types of change: drifting component
strength corresponds to variation in wi(t). Drifting
community structure corresponds to variation in ui(t).

4 Proposed SMF Algorithm

We now propose SMF, an online optimization algo-
rithm, which has two steps: Initialization, where we
use a short initial time period to train an initial model,
then Online Update, where we repeatedly observe the
next time point and update our model. Note that stan-
dard fitting methods cannot be used as they are gener-
ally offline: since we have defined U,W,V as functions
of time, storing all of them simultaneously would re-
quire too much memory, and cause memory usage to
grow over time.

4.1 Initialization Step We start by initializing u,v,
and w. A reasonable initialization requires a few seasons
of data: we use the first 3 seasons, following a common
practice for initializing seasonal ETS models [11]. We
thus ‘stack’ up A(1), · · · ,A(3s) into a m×n×3s sparse
tensor Tinit. Next, we ‘fold’ this into a m×n× s sparse
tensor Tfold:

Tfold =
1

3

3∑
i=1

Tinit(:, :, (i− 1) · s+ 1 : i · s)(4.3)

We then run nonnegative CP decomposition [24]
on Tfold. We use the resulting component as U(0)
and V(0). For the third component, we use its value
in component i at time t as the seasonal multipler
wi(t), for t = −s + 1, · · · , 0. The negative indices
for t are used so that starting at t = 1, we have
valid values when we access the ‘previous season’ of
wi(t). To allow the wi to reflect component strength,
we normalize ui(0) by dividing by its norm ‖ui(0)‖,
compensating by multiplying ‖ui(0)‖ into each of the
wi(t) for t = −s+ 1, · · · , 0 instead. We do the same for
vi(0).

4.2 Online Updates As we receive each A(t) for
t = 1, 2, · · · , we need to update U,V and W in an
online way to preserve good model fit. Assume that we
have fit U,V and W up to time t − 1. At time t, we
start by setting U(t) and V(t) equal to U(t − 1) and
V(t−1), and W(t) equal to W(t−s). We then adjust U
and V by taking a small gradient step in the direction
given by minimizing error with respect to A(t). The
gradient step keeps error with respect to A(t) low (i.e.
A(t) ≈ U(t)W(t)V(t)T ). Taking a small step ensures
that U and V are smooth (U(t) ≈ U(t−1)), while W is
near-seasonal (W(t) ≈W(t−s)). The fitted parameters
‘track’ the true values over time as we perform gradient
updates. Meanwhile, each update is highly efficient as
it only involves gradients with respect to A(t).

Let Â(t) = U(t−1)W(t−s)V(t−1)T . For adjusting
ui(t) and vi(t), the gradient update to ui(t) and vi(t)
can be computed by differentiating fitting error. α > 0
determines the learning rate.

ui(t)← ui(t− 1) + α(A(t)− Â(t))vi(t− 1)wi(t− s)

vi(t)← vi(t− 1) + α(A(t)− Â(t))Tui(t− 1)wi(t− s)

Next, we ensure that the nonnegativity constraint
is met by projecting u and v: ui(t) ← max(0,ui(t))
and vi(t) ← max(0,vi(t)), where max is applied ele-
mentwise. Finally, we re-normalize ui(t) and vi(t) by
dividing by their norms ‖ui(t)‖ and ‖vi(t)‖ respectively
while multiplying these norms into wi(t):

wi(t)← wi(t− s) · ‖ui(t)‖ · ‖vi(t)‖(4.4)

ui(t)← ui(t)/‖ui(t)‖; vi(t)← vi(t)/‖vi(t)‖(4.5)

This allows our seasonality pattern w to adapt over
time, while also ensuring that the normalization con-
straint is met for u and v.

Note that only the last time step of U and V, and
the last s time steps of W are needed at any time. This
prevents memory usage from growing over time.

4.3 Speeding up Updates Â(t) is a dense m × n
matrix, so explicitly forming it is inefficient both in
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Algorithm 1: Online Updates

Input : Sparse matrices A(1), · · · ,A(r),
initialization for U,V,W

Output: U,V,W
1 for t = 1 to r do
2 BPerform gradient updates

3 Â(t) = U(t− 1)W(t− s)V(t− 1)T

4 U(t)← U(t−1)+α(A(t)−Â(t))V(t−1)W(t−s)
V(t)← V(t−1)+α(A(t)−Â(t))TU(t−1)W(t−s)
for i = 1 to k do

5 BProject onto nonnegative constraint
6 ui(t)← max(0,ui(t)), vi(t)← max(0,vi(t))
7 BRenormalize and multiply into w
8 wi(t)← wi(t− s) · ‖ui(t)‖ · ‖vi(t)‖
9 ui(t)← ui(t)/‖ui(t)‖

10 vi(t)← vi(t)/‖vi(t)‖

running time and memory. Instead, we can rewrite the
gradient updates in Lines 4 and 4 of Algorithm 1 into
a more efficiently computable form. Let z(t) be the
number of nonzeroes in A(t).

Lemma 4.1. (A(t)− Â(t))V(t− 1) can be computed in
O(kz(t) + k2(m+ n)) time.

Proof.

(A(t)− Â(t))V(t− 1)

= (A(t)−U(t− 1)W(t− s)V(t− 1)T )V(t− 1)

= A(t)V(t− 1)−U(t− 1)W(t− s)(V(t− 1)TV(t− 1)).

Performing the V(t − 1)TV(t − 1) multiplication pro-
duces a k× k matrix, so the subsequent multiplications
are fast. Specifically, performing V(t − 1)TV(t − 1)
takes O(nk2) time, while multiplying it by U(t−1) takes
O(mk2) time. A(t)V(t−1) requires O(kz(t)+nk) time,
which add up to give O(kz(t) + k2(m+ n)).

Letting z =
∑r
t=1 z(t) be the number of nonzeroes:

Lemma 4.2. Algorithm 1 is O(kz + rk2(m+ n)).

Proof. By Lemma 4.1, lines 4 and 4 take O(kz(t) +
k2(m + n)) time. Lines 5 to 10 are O(m + n), so the
inner loop (line 4) is O(k(m + n)). For the outer loop,
summing O(kz(t) + k2(m + n)) over t = 1, · · · , r gives
O(kz + rk2(m+ n)).

4.4 Forecasting Given any t > r, we forecast A(t)
using the most recent U and V (i.e. U(r) and V(r))
and the W in the most recent season at the time
corresponding to t (e.g. forecasting next Monday using
last Monday), i.e. tseas where tseas = r − (r − t mod s),
where mod is the modulo operation:

Â(t) = U(r)W(tseas)V(r)T(4.6)

4.5 Anomaly Detection: SMF-A Algorithm
Having fit the above model, how do we identify anoma-
lies, e.g. an epidemic, or a road diversion? How anoma-
lous is entity i at time t? We measure anomalousness of
an entity at time t is by its residuals: i.e. the difference
between its observed data at time t, and our model’s fit-
ted values. If a large anomaly occurred at time t, this
difference will be large.

Define the fitted values as Ã(t) = U(t)W(t)V(t)T .
Then for any entity i in the first mode (i.e. row i), its
anomalousness is the sum of squared differences between
the data and the fitted values:

Definition 1. (Row Anomalousness)

Anomi(t) =

n∑
j=1

(Aij(t)− Ãij(t))
2(4.7)

Anomalousness along the second mode is analogous.
Eq. (4.7) is infeasible to compute directly as Ã(t)

is a dense m × n matrix. We now show that Eq. (4.7)
can be computed more efficiently: to do this, we first
rewrite Anomi(t) into a form such that the slowest part
of its computation can be precomputed and then re-
used when computing Anomi(t) for each i. Across m
entities, this provides large savings (up to a factor of
m). In the following, we suppress the ‘t’ notation since
all terms are taken at time t.

Lemma 4.3. An equivalent, faster to compute form is:

Anomi = U(i, :)WVTVWU(i, :)T

+
∑

i,j:Aij>0

(
(Aij − Ãij)

2 − Ã2
ij

)
.

Proof. Note that (Aij − Ãij)
2 = Ã2

ij when Aij = 0.
Hence:

Anomi =

n∑
j=1

(Aij − Ãij)
2

=
∑

j:Aij=0

Ã2
ij +

∑
j:Aij>0

(Aij − Ãij)
2

=

n∑
j=1

Ã2
ij +

∑
j:Aij>0

(
(Aij − Ãij)

2 − Ã2
ij

)
= ‖U(i, :)WVT ‖22 +

∑
j:Aij>0

(
(Aij − Ãij)

2 − Ã2
ij

)
.

= U(i, :)WVTVWU(i, :)T

+
∑

j:Aij>0

(
(Aij − Ãij)

2 − Ã2
ij

)
.

The key point is that WVTVW can be computed once,
then re-used for all i, greatly reducing runtime:
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Lemma 4.4. Computing Anomi for all i is O(kz(t) +
k2(m+ n)).

Proof. Computing WVTVW takes O(mk2) time.
Then, computing U(i, :)WVTVWU(i, :)T takes O(k2)
for each i, thus O(nk2) overall. Computing the next

term
∑
j:Aij>0

(
(Aij − Ãij)

2 − Ã2
ij

)
for every row i

takes O(z(t)k) time, since computing Ãij for each
nonzero Aij takes O(k). Thus the total runtime is
O(kz(t) + k2(m+ n)).

Identifying Anomalous Events Given the Anomi(t)
scores, how do we identify when an anomaly occurred?
One way would be to sum Anomi(t) over entities, and
plot the resulting time series. However, some entities
have much higher natural variation and thus larger
typical values of Anomi(t) than others, and summing in
this way would drown out other true anomalies. Hence,
we instead use a ‘majority vote’ approach that aims
for both accuracy and interpretability: intuitively, time
points with much higher Anomi(t) scores than the next
highest time point are particularly suspicious.

Definition 2. (Weighted Vote) Each entity i

votes for time point t
(1)
i = arg maxtAnomi(t), and the

weight of this vote is Anomi(t
(1)
i )−Anomi(t

(2)
i ), where

t
(2)
i is the time of the next highest Anomi(t).

We repeat this for each entity i. Then, the final anoma-
lousness of each time point is the sum of the weighted
votes given to it. This allows for interpretability: 1)
the set of time points with at least 1 vote acts as a re-
stricted set that practitioners can focus their attention
on. 2) Each time point in this set has an ‘explanation’
in the form of the entities that voted for it. Hence, a
practitioner can examine whether this entity and time
point are truly anomalous.

5 Experiments

We design experiments to answer the following:

• Q1. Accuracy: how accurately does SMF fore-
cast?

• Q2. Scalability: how does it scale?

• Q3. Real-World Effectiveness: does it provide
meaningful components and anomalies in real data?

Our code and datasets are publicly available at www.
andrew.cmu.edu/user/bhooi/smf. We implement our
algorithms in Matlab; experiments were done on a
2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM,
running OS X 10.11.2. Dataset details are in Table 3.
NY-Taxi data points are hourly, with weekly periodicity
(s = 168). Disease data points are weekly, with yearly
periodicity (s = 52).

Rows Columns Time points Nonzero entries

NY-Taxi 2167 2167 2184 28.5M

Disease 39 50 2601 0.5M
Synthetic 5000 5000 5000 31M

Table 3: Datasets used in our experiments.

Baselines Our baselines are static approaches 1) SVD
and 2) NMF; the seasonal approaches 3) Fold [9] and 4)
CPHW [8], and 5) TSVDCWT (Truncated SVD with
Collapsed Weighted Tensors) [8], a dynamic (but non-
seasonal) approach. [14, 6] are also dynamic approaches,
but are designed for ratings (e.g. 1 to 5 stars) and do
not work in our case. For fair comparison, we use k = 15
components for all algorithms. Since our algorithm uses
nonnegative components, we also use nonnegative CPD
for the Folding and CPHW baselines.

5.1 Q1: Forecasting Accuracy We evaluate SMF
compared to baselines on NY-Taxi and Disease. Each
algorithm takes the first rtrain time steps and forecasts
the next rtest. This is repeated for multiple values of
rtrain, and the results are averaged: for NY-Taxi, we use
rtrain = 1600, 1800, 2000 and rtest = 100. For Disease,
we use rtrain = 1000, 1500, 2000 and rtest = 500.

Metrics We use 1) RMSE; 2) Since RMSE values
in large and sparse matrices are hard to interpret,
Time-series RMSE aims to more directly answer
questions like: ‘how many taxi rides will happen each
day from Brooklyn to Manhattan,’ forecasting a subset
of the matrix rows and columns, as a time-series.
Moreover, we want this forecast to be accurate for
any such subsets. Hence, in time-series RMSE, we
select a random subset of rows and columns (each with
probability 1/2). Each algorithm compute a time series
of its forecasted number of events within this subset of
rows and columns, and compares this to the true time
series using RMSE. We average this result over 10 such
random subsets.

As seen in Figure 3, SMF outperforms baselines in
accuracy. The baselines cannot capture changes in the
components, or seasonal pattern, over time. Fairly large
changes happen over time (e.g. see Section 5.3), so this
causes high error.

5.2 Q2: Scalability

Computation time We use a 5000× 5000 matrix for
5000 timesteps, with 200M tuples generated from a re-
alistic power-law slice sum distribution in the first two
modes (with exponent fitted to the NY-Taxi dataset),
and a uniform distribution in the temporal mode. After
combining overlaps, there are 31M nonzeroes. For Fig-
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Figure 3: (a) SMF outperforms baselines in
accuracy: SMF has 13% to 60% lower error than
the best performing baseline. Error bars indicate one
standard deviation.

0 2000 4000 6000
Number of attributes

100

101

102

103

104

Ti
m

e 
ta

ke
n 

(s
)

0 0.5 1
Number of attributes

-2

-1.8

-1.6

-1.4

-1.2

-1

Ti
m

e 
ta

ke
n 

(s
)

SMF
SVD
NMF
Fold
CPHW
TSVDCWT

12x
faster

103x
faster

Non-seasonal
methods

Figure 4: SMF is fast: it outperforms seasonal
baselines, Fold and CPHW. Error bars (small) indicate
one standard deviation.

ure 4, we subsample the first mode in (1000, · · · , 5000),
and plot time taken against size. Each trial is aver-
aged over 4 repetitions. Among the seasonal baselines
(CPHW and Fold), CPHW is slowest as it performs
CPD on the entire tensor. Fold performs CPD on a
shrunken (folded) tensor. SMF is much faster than
these, requiring time comparable to NMF. Note that
SVD and NMF ignore temporal information completely,
operating on a static matrix, and are expected to be fast.

In an online setting where we require incremental
results, the offline methods would need to be re-run for
each time step, while SMF would not. Figure 4 does not

take this into account, and runs each algorithm on the
whole dataset. In such an online setting, the speedup
of SMF over CPHW and Fold would be much greater.
Figure 5 shows that SMF scales linearly in attributes
(a), timesteps (b), and entries (c).
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Figure 5: (a) SMF scales linearly.

Parameter Selection We select α using cross-
validation between {0.1, · · · , 0.5}, producing 0.3 and 0.1
on Disease and NY-Taxi. The period s often can be de-
duced from domain knowledge, but if needed, it can also
be estimated by cross validation between a few reason-
able candidates (daily, weekly, yearly, etc.). Figure 6
shows that SMF is insensitive to the hyperparameter
α, and performs well in all cases.
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Figure 6: SMF performs well across parameter values.

5.3 Q3: Real-World Effectiveness We now show
that SMF provides useful and interpretable results on
the NY-Taxi dataset. A similar (but Manhattan-only)
dataset was studied by [9]. Figure 7 shows the results
for 3 components, one per row. The first is concentrated
around Central Park and the nearby museums, and
likely to represent tourism. Its peaks coincide with
mealtimes (9am, 1pm, 7pm). The second component
peaks at 8-9am on weekdays, and is concentrated on
the major railway stations and airports, and likely
represents commuting trips, particularly in the morning
‘rush-hour.’ The third component peaks around Friday
10pm and Saturday midnight. This component is
concentrated around southwest Manhattan, an area
with a large number of bars and restaurants, suggesting
entertainment related trips. In summary, our model
finds meaningful seasonal components that give more
insight than static approaches.
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Figure 7: (a) SMF provides interpretable results with seasonal information: the three components in the
Taxi dataset correspond roughly to tourism-related trips (near Central Park and museums), morning rush-hour
trips (airports and train stations), and entertainment (restaurants and bars).

Drifting components An advantage of SMF is that
it allows components to drift. We use this to find
meaningful patterns in the NY-Taxi dataset. In New
York City, prior to 2013, most pick-ups by traditional
‘yellow’ taxis occurred in Manhattan or at airports,
resulting in low access to taxis for people living in
outer areas (‘boroughs’) [1]. In 2013, the ‘green’ taxi
program was introduced: these pick up passengers only
in outer boroughs, except at airports. Did the green taxi
program improve access to taxis in the outer boroughs,
and what type of trips were affected?

Figure 8a plots the fraction of each component that

lies within Brooklyn (an outer borough). Only the red
(‘commute’) components shows clear movement towards
Brooklyn, increasing by 53%. This suggests that more
and more commute-related taxi trips are departing from
Brooklyn, while no such change occurs for the other two
components. This supports the claim of a shift towards
outer boroughs, and further reveals what type of taxi
trips were most affected: commute-related trips.

Did this change occur because of the green taxi
program? We extract the top 20 locations in Brooklyn
with the largest values of the ‘commute’ component. In
these locations, Figure 8b plots the fraction of green and
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Figure 8: SMF allows components to change over
time: (a) the ‘commute’ component (red) shifts toward
Brooklyn, increasing by 53% in the fraction of the
component in Brooklyn. (b) This can be explained by
an increase in green taxis in the ‘commute’ component.

yellow taxis over time: green taxi rides rose significantly,
while the yellow taxi rides decreased slightly. This
suggests that green taxis were increasingly adopted,
and since green taxis only pick up passengers in outer
boroughs, this supports the claim that the rise of green
taxis contributed to the shift towards Brooklyn. Thus,
allowing the components to change over time reveals
useful new information about the dataset.

5.4 Anomaly Detection We now evaluate the
anomaly detection accuracy of SMF-A. Starting with
the NY-Taxi dataset, we inject 100 anomalies of two
types: ‘add’ anomalies represent an increase in activity
(e.g. a major festival), while ‘scramble’ anomalies repre-
sent changes in behavior (e.g. a traffic accident redirect-
ing traffic). For the 50 ‘add’ anomalies, we select a ran-
dom 50 rows and columns, and add 500 taxi trips to this
block, distributed according the same power-law distri-
bution as Section 5.2. For the 50 ‘scramble’ anoma-
lies, we select the 200 highest degree rows and columns,
and randomly permute the rows and columns, changing
the position of entries in this submatrix. We compare
SMF-A to DenseAlert [19], a recent anomaly detec-
tion algorithm based on dense submatrix detection. The
thresholds plotted in Figures 9 and 1c are 3 standard
deviations from the mean (in log-space).

Results: Table 4 shows the precision at 100 of
both methods on ‘add’ and ‘scramble’ anomalies, and
Figure 9 shows the output of SMF-A. 100 is the true
number of anomalies, so the number of false positives
and negatives are equal. SMF-A is much more accurate
than DenseAlert, and faster. This is because SMF-A
takes into account differences from expected behavior,
while DenseAlert only considers density. Moreover,
DenseAlert cannot catch ‘scramble’ anomalies as it
detects high activity, while SMF-A can detect any type
of deviation from expected behavior.
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Figure 9: SMF-A detects multiple types of
anomalies: it catches anomalies which add taxi trips
(‘add’) or permute a subset of locations (‘scramble’).
We plot only the first 25 days, for visibility.

Prec. (add) Prec. (scramble) Runtime (sec.)

SMF-A 1.00 0.86 304.94

DenseAlert 0.06 0.06 1247.13

Table 4: SMF-A outperforms baselines in
anomaly detection: precision of SMF-A in catch-
ing injected anomalies which add taxi trips (‘add’) or
randomly reorder a subset of locations (‘scramble’).

Figure 1c shows our results of SMF-A on the
Disease dataset. Two epidemics stand out, both of
which have been reported in the medical literature: a
large influenza outbreak in 1928 in Northeast US [4],
and a measles epidemic in New York in 1946 [16].

6 Conclusion

We propose SMF, a drift and seasonality aware, online
matrix factorization algorithm, and SMF-A, a fast
anomaly detection algorithm. In contrast to existing
methods (Fold and CPHW), our model uses smoothly
varying components u and v, and seasonally varying
multiplers w to model seasonality. Our contributions
are as follows:

• Model: we propose a novel matrix factorization
model incorporating seasonal patterns and drift,
and an online algorithm for fitting this model.

• Effectiveness: in experiments, SMF has lower
forecasting error than baselines by 13% to 60%
(Figure 1a), and provides interpretable results in
case studies on real data.

• Scalability: SMF is online, and scales linearly
(Figure 1b). In experiments, it was 12 to 103 times
faster than seasonal baselines.

• Fast Anomaly Detection: we propose SMF-A
for detecting anomalies (Figure 1c) in a computa-
tionally feasible way, without forecasting every pos-
sible observation in the matrix.
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