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1 TIME COMPLEXITY FOR TIME SERIES
MODEL FITTING STEP

One of the key steps of our CHANGEDAR-S algorithm computes the
bitsave scores. Recall that the bitsave score from adding a change
at time ¢ at node v is:

Ap (1) = Cost(Xo(t —w), -+, Xo(t + W)
— Cost(Xop(t —w), -+, Xp(t — 1)) o
— Cost(Xy(t), -+, Xo(t + w))

Also recall that the Cost terms in Eq. (1) are defined as the number
of bits needed to encode the given sequence under various time
series models. In this section, we consider the constant (mean),
autoregression, and seasonal autoregression models and show that
the bitsave scores at each time tick (e.g. time tick ¢ in the above
expression) can be computed in amortized constant time.

Note that computing Eq. (1) naively would require at least O(w)
time, since we would compute the modelling error at time ticks
t —w to t + w individually. To speed this up, we use an online
approach: note that when we move from time ¢ to t + 1, the Cost
expressions in Eq. (1) change only by shifting the window by one
step. The fact that it mostly remains the same makes it possible to
update this Cost expression to its new value in constant time.

LEMMA 1. Under the constant, autoregression, and seasonal au-
toregression models, the bitsave score at time t and node v in Eq. (1)
can be computed in amortized O(p>) time, where p is the AR order
(which we treat as constant).

Proor. First consider an AR(p) model [1], with the form:

P
Xo(t) ~ g0+ Y. $iXo(t - i)
i=1
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Rewriting this in the using linear model form:

Xo(t —w)

Xty 1 Xo(t—w=1) Xo(t=w=p)] [#o

Xv(t+.w+1) 1 Xp(t+w-1) Xo(t+w=p)| |$p
y X b

By standard formulas for linear regression [2], the residual sum
of squares is

RSS =y Ty —yTX(XTX)1XxTy

Note that when moving from time ¢ to ¢ + 1, y” y can be easily
updated in constant time, by adding the square of the newly added
entry of y and subtracting the square of the entry that is being
removed. Similarly, X7y can be updated in O(p) time, while X7 X
can be updated in O(p?) time, after which computing (X7 X) ™! is
o).

Combining, this shows that RSS, and hence the Cost(Xy (t —
w), -, Xy (t + w)) term of Eq. (1), can be computed in O(p®) time.
The other two terms of Eq. (1) can also be updated in O(p®) time in
the same way: note that in all 3 cases, when moving from ¢ to t + 1,
we essentially have a linear regression which is changing by one
sample, which we can update in the same way. In conclusion, for
AR(p) models, we can compute Eq. (1) in amortized constant time.
In addition, the constant (mean) model is just an AR(0) model, so
also requires amortized constant time.

Finally, the seasonal AR SAR(p) model [1] with period m can
also be expressed in linear model form with p + 1 coefficients in
almost the same way:

Xo(t —
ng;‘_w”j)l) 1 Xyt —w—m) Xo(t—w—-m-p)] [0
Xo(t+w+1) 1 Xyp(t+w—m) Xv(t+w_m.p)i5£/
y” X

Hence, using the exact same argument as for AR, the SAR(p)
model also allows us to compute Eq. (1) in amortized constant
time. O
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