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ABSTRACT

Graph neural networks (GNNs) have achieved state-of-the-art per-
formance on graph classification tasks. Existing work usually feeds
graphs to GNNs in random order for training. However, graphs can
vary greatly in their difficulty for classification, and we argue that
GNNs can benefit from an easy-to-difficult curriculum, similar to
the learning process of humans. Evaluating the difficulty of graphs
is challenging due to the high irregularity of graph data. To address
this issue, we present the CurGraph (Curriculum Learning for
Graph Classification) framework, that analyzes the graph difficulty
in the high-level semantic feature space. Specifically, we use the
infomax method to obtain graph-level embeddings and a neural
density estimator to model the embedding distributions. Then we
calculate the difficulty scores of graphs based on the intra-class and
inter-class distributions of their embeddings. Given the difficulty
scores, CurGraph first exposes a GNN to easy graphs, before grad-
ually moving on to hard ones. To provide a soft transition from
easy to hard, we propose a smooth-step method, which utilizes a
time-variant smooth function to filter out hard graphs. Thanks to
CurGraph, a GNN learns from the graphs at the border of its capa-
bility, neither too easy or too hard, to gradually expand its border at
each training step. Empirically, CurGraph yields significant gains
for popular GNN models on graph classification and enables them
to achieve superior performance on miscellaneous graphs.
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« Computing methodologies — Supervised learning by clas-
sification; Learning from implicit feedback; Batch learning; Learning
latent representations; Neural networks.
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1 INTRODUCTION

Graph classification is a fundamental task on graph data, which
aims to predict the class labels of entire graphs. The modern tools
of choice for this task are graph neural networks (GNNs). Typically,
GNNs build node representations from node features and graph
topology via the ‘message passing’ mechanism and then make
graph-level predictions by summarizing the node representations
through a readout function [63], [49].

Although a lot of attention has been paid to developing new
GNN architectures of higher representational capacity [30], [63],
[65], it is also valuable to explore how to design advanced training
methods to improve GNNs. Most existing work performs training
of GNN s in a straightforward manner, i.e., all graphs are treated
equally and presented in random order during training. However,
even in the same dataset, graphs can vary significantly in their
difficulty levels. For example, some graphs are easy to discriminate
by their significant and popular substructures, while others require
sophisticated reasoning due to their complicated topology and
indistinct patterns (see Fig. 2). Extensive research discovers that
feeding the training samples in a meaningful order, starting from
easy ones and gradually taking more difficult ones, can benefit
machine learning algorithms [4], [51], [62]. This strategy is known
as Curriculum Learning.

Curriculum Learning was first formally proposed in [4], inspired
by humans’ learning process: an infant starts with a simple initial
state, and then builds on that to handle more and more sophisti-
cated concepts gradually. Recent years have witnessed successful
applications of Curriculum Learning in the fields of Computer Vi-
sion [24], [21], [42] and Natural Language Processing [41], [38]. In
terms of optimization, Curriculum Learning excludes the negative
impacts from difficult or even noisy samples in the early training
stages, and guides the model towards better local minima in the
parameter space. Motivated by this, we argue that GNNs can benefit
from Curriculum Learning on graph classification, which, however,
remains under-explored.

A key challenge of designing a Curriculum Learning method
for graph classification lies in how to evaluate the difficulty of
graphs. The evaluation is non-trivial because the graph data is
highly irregular and noisy. Each graph exhibits complicated rela-
tionships between nodes, and the number of nodes (#Nodes) and
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edges (#Edges) vary by orders of magnitudes for different graphs.
Prior curriculum learning approaches evaluate difficulty by defin-
ing the heuristic metrics by observing the characteristics of the
particular target task and data [4], [38]. In [48], for instance, authors
take shorter sentences as easier samples for grammar induction.
We can follow them to take the #Nodes and #Edges to evaluate
graphs because higher #Nodes or #Edges implies more complicated
topology. However, these heuristics, relying on low-level features,
may not reflect the difficulty perceived by GNNs, which learn high-
level semantic features via a multi-layer nonlinear function, and
thus cannot generalize to different GNNs and datasets.

To address this challenge, the central idea of this paper is to en-
code the graphs into high-level semantic embeddings using GNNs
and to calculate the difficulty scores based on the intra-class and
inter-class distributions of embeddings (see Fig. 1). We encapsulate
this idea in a new GNN framework, called CurGraph (Curriculum
Learning for Graph Classification), that uses the infomax method to
obtain graph embeddings and a neural density estimator to model
embedding distributions. Based on the difficulty scores, we further
propose a smooth-step method to provide a soft transition from
easy to hard graphs for GNNs. Then at each training step, a GNN
focuses on ‘interesting’ examples, that are near its border of capa-
bility, neither too easy nor too hard, to expand the border gradually.
CurGraph can be incorporated into popular GNN architectures for
graph classification. It enhances GNNs without extra inference cost
by feeding the graphs in an easy-to-difficult fashion for training.

We evaluate CurGraph on the graph classification task using
the standard chemical [15] and social [64] datasets. Qualitatively,
CurGraph conducts interpretable difficulty evaluation on graphs
based on the statistical analysis in the high-level embedding space.
Quantitatively, we observe the improvements in test accuracy of
graph classification for GNN models. The improvements are higher
than that given by the heuristic curriculum and the advanced Cur-
riculum Learning methods from other fields [21], [42]. Overall,
CurGraph improves the popular GIN [63] and EigenPool [33] by a
significant margin, and enhances them to outperform the baseline
methods.

2 RELATED WORK

Graph Classification and Graph Neural Networks. Early solu-
tions to graph classification include graph kernels. The pioneering
work [23] decomposes graphs into small substructures and com-
putes kernel functions based on their pair-wise similarities. Subse-
quent work proposes various substructures, such as subgraphs [27],
paths [7], and subtrees [47], [35]. We refer readers to [37], [28] for
a general overview. More recently, many efforts have been made to
design graph neural networks (GNNs) for graph classification [43],
[31], [36], [20], [65], [68], [63].

Due to the long history of Graph Neural Networks, we refer
readers to [61] and [69] for a comprehensive review. The first work
that proposes the convolution operation on graph data is [9]. More
recently, [26] and [13] speed up the graph convolution operations
by introducing localized filters based on Chebyshev expansion.
Specifically, [26] has made breakthrough advancements in the rep-
resentation learning on graphs. As a result, the model proposed in
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[26] is generally denoted as the vanilla GCN, or GCN (Graph Con-
volutional Network). After [26], numerous methods are proposed
for better performance on the graph learning [52], [60], [14], [59],
[58], [5]. [66].

To improve the model capacity, [54], [67], and [22] use the at-
tention mechanism to better capture neighbor features by dynami-
cally adjusting edge weights. Mixture Model Network (MoNet) [34]
adopts a different approach to assign edge weights. It introduces
node pseudo-coordinates to determine the relative position between
anode and its neighbors, then defines a weight function to map the
relative positions to edge weights. [55] alternatively drives local
network embeddings to capture global structural information by
maximizing local mutual information. [10] proposes a non-uniform
graph convolutional strategy, which learns different convolutional
kernel weights for different neighboring nodes according to their
semantic meanings. LGCN [19] ranks a node’s neighbors based
on node features. It assembles a feature matrix that consists of its
neighborhood and sorts this feature matrix along each column. [57]
proposes the low-pass ‘message passing’ for robust graph neural
networks, inhibiting the transmission of the adversarial information
propagated through edges.

The above-mentioned work focuses on developing GNN architec-

tures. In contrast, our framework is orthogonal to them in the sense
that we propose a new training method that enhances a GNN model
by feeding the training samples to it in an easy-to-difficult curricu-
lum. As far as we know, we are the first to develop a curriculum
learning approach for graph classification.
Curriculum Learning. Early research [17], [39], [29] at the inter-
section between cognitive science and machine learning proposes
the idea of training machine learning models in an easy-to-difficult
fashion. Based on these work, [4] proposes Curriculum Learning,
that organizes training samples in a meaningful order to learn more
complex concepts gradually. Recent research successfully applies
Curriculum Learning into Computer Vision [50], [11], [24], [21],
[42] and Natural Language Processing [41], [51], [62], [38], which
generally follows two steps: evaluating the difficulty first, and then
ordering the training samples accordingly. To the best of our knowl-
edge, no work has discussed curriculum learning in the context of
graph classification. On the idea of designing the curriculum learn-
ing method, our approach is most closely related to [21], which
distinguishes the noisy images in the feature space. Compared with
it, we propose three main advancements in CurGraph. First, we use
the state-of-the-art infomax method to extract graph embeddings
and the advanced neural density estimator to model embedding
distributions instead of the simple clustering in CurriculumNet. Sec-
ond, we analyze the effects on the difficulty of both intra-class and
inter-class embeddings using statistical metrics, while Curriculum-
Net only considers the outliers in each class separately. Third, we
propose the smooth-step curriculum learning strategy to provide
soft transitions across training stages.

3 METHODOLOGY

In this section, we describe our CurGraph (Curriculum Learning
for Graph Classification) framework for graph classification. Cur-
Graph accepts a GNN model f and a graph set G as the inputs: it
strengthens the inference performance of f by feeding the graphs
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Figure 1: Infomax Curriculum Design. We use InfoGraph [49] to obtain graph representations, and BNAF [12] for density
estimation. We calculate difficulty scores from intra-class and inter-class densities of Graph Embeddings (by Eq. (9)). Levels of
transparency are positively related to difficulty scores. y = 0.4 assigns higher difficulty values to outliers than y = 1.0.

in G to f in an easy-to-difficult fashion during training. CurGraph
consists of two main components: (i) An infomax curriculum design
module evaluates the difficulty of graphs from the inter-class and
intra-class distributions of graph-level embeddings. (ii) A smooth-
step curriculum learning strategy provides soft transitions when
exposing the GNN model to graphs across different difficulty levels.
Details are introduced next.

3.1 Infomax Curriculum Design

We define a set of graphs as G = {G1,Gg, ...,GN}, where N is the
number of graphs. A graph G; consists of a set of nodes V; and a set
of edges &;. Graph classification aims to learn a mapping function
f : Gi — y; that maps every graph to a predicted class label 3;.
Graph neural networks (short as GNNs) are known as the state-
of-the-art solution for graph classification. Typically, GNNs obtain

the nodes’ representations hz(,f) through the ‘message passing’ mech-
anism, and summarizes nodes’ representations into a single graph
embedding through a ‘readout’ function:

h; = READOUT({hf,f) o) € (v,}) )

where L is the number of GNN layers. READOUT can be a sim-
ple permutation invariant function such as summation or a more
sophisticated graph-level pooling function [65], [68].

At the core of our idea is to develop difficulty measurements
on graphs that are justified for GNN models. One straightforward
way is to use some heuristic metrics observed from the low-level
data characteristics. For example, we can simply take the number
of nodes (#Nodes) or the number of edges (#Edges) to measure the
difficulty. This intuitively makes sense in humans’ views because
larger #Nodes/#Edges implies more complicated graph structures.
However, GNNs encode graphs through the advanced non-linear
transformations. The low-level heuristic metrics, which depend
only on the data rather than a specific model, may not meet the
difficulty perceived by GNNs and cannot generalize to different
GNNS.

In this work, we analyze the graph embeddings h; retrieved by
the GNN model f, and calculate the difficulty scores from the intra-
class and inter-class distributions of {h; | G; € G}, as presented in
Fig. 1. The graph embedding h; reflects the high-level semantic
information that f obtains from G;. Thus, our analysis on h; infers
the specific difficulty perceived by f and can generalize to different
GNN models adaptively. We use the state-of-the-art unsupervised
GNN scheme, InfoGraph [49], to obtain the graph-level embed-
dings. InfoGraph obtains graph representations by maximizing the
mutual information between graph-level representations (h;) and
node-level ones ({hz(,f) |oj € "Vi}), so that the graph representa-
tions can learn to encode aspects of the data that are shared across
all substructures. Recent research shows that the graph embeddings
provided by InfoGraph are powerful on multiple downstream tasks
[53], [2]. Here, we extend its application to curriculum learning.
InfoGraph follows the infomax optimization principle [32], [3], so
we call our method ‘infomax curriculum design’.

In the embedding space of {h; | G; € G}, for graph G; and its
embedding h; € R4, we build a d-dimensional ball with radius R
centered at h;:

B (hi,R) = {x | llx —hi|l <R}, @)

where R is a small value to include the graphs semantically similar
to G;. For the ease of expression, we term the graphs that fall in
B(hj, R) as the ‘neighbors’ of G;. Suppose the ground-truth label of
graph G; is y;. We count the ratio of the graphs belonging to class
¢ and being the neighbors of G; as:

DY

J=1...N,yj=c

1 (hj € B(hi,R)) s (3)

where I(Statement) is an indicator function which outputs 1 if
Statement is true, and 0 otherwise. Intuitively, the higher the frac-
tion of neighbors of G; belongs to the same class as G;, the lower
G;’s difficulty should be. Hence, we propose the following function
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Figure 2: Example Graphs from PROTEINS [8] (first and third row) and NCI1 [56] (second and fourth row) datasets. Difficulty is

determined by our CurGraph implemented on GIN [63].

to evaluate the difficulty of G;:

N Zj=1,.N,y;=y; [ (b € B(hzsR))
N Zj=1.N 1 (hj € B(hiR)) +eg

Dr(Gi) =1~

Y=t N.yy=y; [ (hj € B(h,,R)) counts the nelghbors of G; that

all the neighbors of G;. If eg = 0 ho’ld’s, (4) is negatively related
to the ratio of G;’s neighbors belonging to class y;. However, for
different graphs G;, the number of neighbors can vary by orders of
magnitudes, which this simple ratio does not capture appropriately.
For example, if G; has massive neighbors, then G; is a normal graph
that has many peers similar to itself. If these neighbors belong to the
same class as Gj, then it is easy for f to classify, because G; holds
the popular and discriminative feature for its ground-truth class y;.
In this case, DR (G;j) returns a high value with eg = 0. On the other
hand, if G; has few neighbors, G; is an outlier in the dataset. Then
G; is difficult to classify no matter whether its neighbors belong
to class y; or not. Based on the analysis above, we use the hyper-
parameter €g to adjust difficulty values for different graphs. When
% Xj1..N 1 (hj € B(hi,R)) > eg, we have

Yj=1,..N,y;=y; | (b € B(hi,R))
Yje1.NT (hj € B(hi, R))

Dg(Gy) =1 - 6)]

Otherwise, eg penalizes the difficulty of G, i.e., Dr(G;) returns a
higher value. The strength of the penalty grows as the number of
neighbors decreases (becoming an outlier). Therefore, we can view

€R as a penalty element for outliers. For convenience, we set eg as:

(1-y)
1
€R = K]mlax. Z I(hj € B(h;R)) X
j=1,...N
Y
A min Z (h; € B(hi,R)) | , (6)

where y is an hyper—parameter between 0 and 1 to replace eg. We
set eg as the weighted geometric mean of the maximum and min-
the possibly large gai) on the order of magnitudes between the
maximum and minimum, this setting makes eg sensitive to both
the minimum and maximum, instead of only the maximum.

To put Eq. (4) into practice, setting the value of R is an issue.
Next, we show that R does not necessarily influence the difficulty
evaluation. Eq. (3) is a consistent estimator of the quantity [44]:

PheBbRy=0= [ phy=od )
B(h;,
where p(h, y = ¢) is the probability density function that a graph G
belongs to class ¢ while its embedding is located at h. As explained
above, R has a small value. Thus, the density p(h, y = ¢) within the
region B(h;, R) does not change too much. Namely, p(h) ~ p(h;)
for every h € B(h;, R). Hence, we have:

/ p(hyy=c)dh = p(hj,y=c) dh

B(h;.R) B(h;,R)
=p(hy=c) xVgxR% (8)

where V; = r(2 ; /21) is the volume a unit d-dimensional ball and

T'(-) is the Gamma function [1]. Bringing Eq. (8) and (6) into Eq. (4)
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Figure 3: We design smooth-step threshold function for cur-
riculum learning. We plot our smooth-step function D;(t)
in Eq. (14) with T = 1000, Dg_1 = 0, and Ds = 1. The hyper-
parameter p changes the speed at which D(t) increases.

leads to our final difficulty function:
p(hi,y = y;)

b(Gi) =1~ S.pthny=c)+e

)
where

1=y Y
ez(mapr(hi,yw)) (m.ian(hi,yzc)). (10)

Another interpretation of Eq. (9) can be obtained with the poste-
rior distribution p (y = y;|h;):

Noy_  Phiy=1y)
DGy =t Sephiy=c)+e
_y_phiy=y) p(hi)
pthi)  p(hi)+e
h;
“1-p = ulh) HS0 )

Given h;, a higher p (y = y;|h;) indicates that the graph is more
likely to be classified with its ground-truth class. In other words, G;
is similar to other graphs belonging to the class y; and dissimilar
pj()l(ltl)ij-e is used as a
penalty term for outlier graphs, as explained above.

Given Eq. (9), the remaining task is to estimate the probability
densities p(h;, y = y;) given the embedding set: {h;, G; € G}. This
is a classical machine learning task known as Density Estimation,
in which the state-of-the-art approach is neural density estimation.
In our work, we use Block Neural Autoregressive Flow (BNAF) [12],
a popular recent neural density estimator due to its flexibility and
efficiency.

We visualize the effects of y in Fig. 1. When y = 1.0, i.e., €
reaches the minimum value, the outlier graphs are assigned to low
difficulty values, which is not what we expect. But when y = 0.4, the
outlier graphs have high difficulty values. This demonstrates that
introducing y is effective in giving appropriate difficulty values for
different graphs. Overall, D(G;) returns a difficulty value between
0 and 1. And a larger value of D(G;) infers a higher difficulty of G;.

We show the example graphs with the evaluated difficulty from
the PROTEINS [8] and NCI1 [56] datasets in Fig. 2. The easy graphs

to the graphs in other classes. The element
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hold simple topology and share popular and significant substruc-
tures, such as the four-node complete subgraphs in the first row,
and the six-node ring subgraphs in the second row. In contrast,
harder graphs generally hold more complex structures and their
dominant pattern is not obvious.

3.2 Smooth-Step Curriculum Learning

In this section, we describe our method to train GNNs based on
our difficulty scores. CurGraph divides the training of GNNs into S
stages. Accordingly, we sort the graphs by their difficulty scores in
the ascending order, and split them into S buckets, so the graphs
are allocated into S levels of difficulty. More precisely, we set S — 1
threshold values {Ds | s = 1,...,S — 1}, and put the graphs:

Gs = {Gi,Ds—1 < D(G;) < Ds} (12)

into the sth bucket, where Dy = 0 and Dg = 1 holds for consistency.
At the sth training stage, we add the graph set Gs to the existing
graph subset Geyr:

Geur < Geur Y Gs, (13)

where Gy, is initialized as an empty set before the first training
stage. Then, the GNN model is trained to converge on G, before
the next training stage starts.

Existing work on curriculum learning generally adds the whole
Gs to Geyr in one shot. Denote an auxiliary time-variant threshold
on the difficulty values as Dg(t), where t is the epoch index reset
to 0 at the beginning of each training stage. The graphs of difficulty
values lower than Ds(t) are used for training GNNs at epoch ¢.
Then, we can see that, in the existing curriculum learning methods,
Ds(t) is a step function jumping from Ds_; to Ds when t = 0.
This is a hard transition because massive graph samples of diverse
difficulty values (from Ds_ to Ds) are added at the same time.

We propose a novel smooth-step threshold function, which gradu-
ally increases from Ds_; to Dy in a smooth style. Our smooth-step
function is S-shaped and continuously differentiable, similar to the
logistic function [6]. Let p be a hyper-parameter between 0 and
1. The smooth-step function is a cubic polynomial in the interval
[0, pT], Ds—1 to the left of the interval, and Ds to the right, where
T is the maximum epoch number. More formally, we assume that
the function takes the parametric from Dg(t) = at® + bt? + ct + d
for t € [0, pT], where a, b, ¢, d are scalar parameters depending on
p. We then solve for the parameters under the following continuity
and differentiability constraints: (i) Ds(0) = Ds—1, (ii) D(pT) = Ds,

(iii) (D)), = 2P(0)|,_ 1 — 0. This leads to:
Ds-1 ift<0
Ds(t) = 2<D;ng§DS) 3+ 3(D;Z‘T%*1) 2+Ds_1 if0<t<pT
Ds ift > pT

(14)
We visualize Ds(t) in Fig. 3. We observe that our smooth-step func-
tion D;(t) is both continuous and continuously differentiable for
any t € R (including t = 0 and ¢ = pT) by our careful construction.
For t > pT, Ds(t) keeps at Dy, i.e., all the graphs in the bucket
G, are included for training. The choice of p controls the speed at
which the difficult graphs are added to Geyr. A very small p can put
most graphs in the bucket G used for training at the beginning,
i.e., degrading our method to the original hard transition.
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Algorithm 1 Smooth-Step Curriculum Learning.

Input: A graph set G = {G1,Ga, ..., Gn}. the difficulty scores G:
{D(G;j) | Gi € G}, a GNN model: f : G; — ¥, the ground-truth
labels {y; | i = 1,..., N}, the number of training stages S, the
difficulty thresholds: {Ds | s = 1,...,S — 1}, the maximum epoch
number per stage T, the hyper-parameter p in Eq. (14).
Output: The predicted classes {fj; | i = 1,..., N}, the trained
parameters of the GNN model f.

1: Intilize all parameters of f.

2: Intilize the temporary graph set for training Geyr — 0.

3: fors < 1to S do

4: DS(O) —0

5 fort — 1to T do

6: if t < pT then

7 Ds(t) — Z(D;;]T;DS) B4 3(D;2—]1_325—1)t2 +Dy_;

8: else

9: Ds(t) «— Dy

10: end if

11: Geur < Geur UY{Gi | Ds(t — 1) < D(G;) < Ds(t)}
12: Predict the classes {§; | Gi € Geur} by f.

13: Calculate cross-entropy loss L on {3;,yi, | Gi € Geur}-
14: if L converges then

15: break

16: else

17: Back-propagation on f for minimizing L.

18: end if

19: end for

20: end for

We note that variants of the smooth-step functions are popu-
lar in computer graphics [16], [40]. However, to the best of our
knowledge, the smooth-step function has not been used in GNNs
or curriculum learning. It is also worth noting that the cubic poly-
nomial used for interpolation in Eq. (14) can be substituted with
high-order polynomials (e.g., polynomial of degree 5, where the
first and second derivatives vanish at t = 0 and t = pT). Our
smooth-step curriculum learning approach directly applies to the
case of higher-order polynomials. We show the pseudo-code of our
smooth-step curriculum learning in Alg. 1.

Easy graphs can be seen as clean samples, which have fewer
redundant graph structures and less noisy labels, while the difficult
graphs are noisy. At early stages, CurGraph feeds the GNN model
only clean samples, helping GNN to learn fundamental features
while protecting them from being perturbed by noisy samples. After
that, CurGraph feeds noisy samples to GNN gradually, allowing
it to learn more meaningful and discriminative features. The data
added later improves the generalization capability of the model
and allows the model to avoid over-fitting over the easy graphs, by
providing a manner of regularization. Within the sth training stage,
the difficulty gap Ds — Ds—1 exists between newly added graphs.
Our smooth-step method makes the samples be added smoothly
following the order of their difficulty, where the hyper-parameter
p controls the speed of adding difficult graphs. As a result, at each
training step, CurGraph feeds a GNN ‘interesting’ examples, which
would be standing near the border of the GNN’s capability, neither
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Table 1: Statistics of the utilized datasets. #Nodes denotes the
average number of nodes per graph, while #Edges denotes
the average number of edges per graph.

Dataset #Graphs #Nodes #Edges #Classes
D&D 1,178 284.32 715.66 2
ENZYMES 600 32.63 62.14 6
NCI1 4,110 29.87 32.30 2
NCI109 4,127 29.68 32.13 2
PROTEINS 1,113 39.06 72.82 2
Mutagenicity 4,337 30.32 30.77 2
COLLAB 5,000 74.49 2457.78 3
IMDB-B 1,000 19.77 96.53 2
IMDB-M 1,500 13.00 65.94 3
REDDIT-B 2,000 429.63 497.75 2
REDDIT-5K 4,999 508.52 594.87 5

too easy nor too hard, so that the GNN can expand the border
gradually. Overall, CurGraph guides the optimization of GNNs,
which is non-convex, towards better local minima.

4 EXPERIMENTS

In this section, we present the graph classification performance
of GCN models trained by CurGraph. We compare our method
with baselines without curriculum learning, the strong curriculum
learning methods from other fields, as well as heuristic difficulty
measures based on the graph structure. Besides, we conduct ablation
studies to show the influence of different components of CurGraph,
as well as the sensitivity of the performance with respect to the
hyper-parameters of CurGraph.

We use the standard benchmark datasets: D&D [15], ENZYMES
[45],NCI1,NCI109 [56], PROTEINS [8], Mutagenicity [25], COLLAB,
IMDB-B, IMDB-M, REDDIT-B, and REDDIT-5K [64] for evaluation. The
former six are chemical datasets, where the nodes have categorical
input features. The latter five are social datasets that do not have
node features. We follow [63], [68] to use node degrees as features.
The statistics of these datasets are summarized in Table 1.

We use popular graph classification models as the baselines:
GRAPHLET [47] and Weisfeiler-Lehman Kernel (WL) are classical
graph kernel methods, while DGCNN [68], DiffPool [65], EigenPool
[33], and GIN [63] are the GNNs designed for graph classification,
which hold the state-of-the-art performance. In addition, we take
the recently proposed curriculum learning frameworks designed
for convolution neural networks on image classification, Curricu-
lumNet [21] and DCL [42], for comparison.

For the hyper-parameters of InfoGraph, BNAF, and baselines,
e.g., the number of layers, the optimizer, the learning rate, we
set them as suggested by their authors. When implementing our
CurGraph with the GNN models, we use the GNN model under
consideration as the backbone of InfoGraph for consistency. For the
hyper-parameters of our CurGraph, we set the number of training
stages S = 4, the difficulty thresholds {Ds =s/S|s=1,...,S -1},
p = 0.4 for the smooth-step, y = 0.4, and T = T;qx /S by default,
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Table 2: Test Accuracy (%) of graph classification on chemical datasets. We perform 10-fold cross-validation to evaluate model
performance, and report the mean and standard derivations over 10 folds. We highlight best performances in bold.

Method D&D ENZYMES NCI1 NCI109 PROTEINS Mutagencity
GRAPHLET [47] 72.1+3.7 41.4+5.2 64.3 2.2 62.5+ 2.8 70.1 + 4.1 623+1.9
WL [46] 73.2+ 1.8 53.7 £ 6.0 76.3 £ 1.9 75.8 £ 2.3 723+ 3.4 79.5+ 1.8
DGCNN [68] 76.7 = 4.1 393 +£59 76.5+ 1.9 759 £ 1.7 72.9 £3.5 795+ 1.7
DiffPool [65] 75.2 £ 3.8 59.7 £5.3 76.8 = 2.0 755+ 1.9 73.6 = 3.6 79.8 £ 1.8
EigenPool [33] 75.9 £ 3.9 62.4 +3.8 78.7+1.9 774+ 2.5 74.1+ 3.1 80.2 + 1.7
GIN [63] 754 + 2.6 60.3 +£4.2 79.7 + 1.8 782+ 2.1 735+ 3.8 799 £ 1.4
CurriculumNet [21] + GIN 75.7 £ 2.8 60.7 + 4.4 80.2+ 1.8 78.5+2.0 73.7+£3.7 80.2 + 1.6
DCL [42] + GIN 76.0 3.2 61.1+49 79.8 £ 2.1 78.9 £ 2.2 73.8 +3.9 80.5+1.9
CurGraph + EigenPool 78.6 = 3.0 64.8 + 3.3 80.6 £1.9 792 £2.2 75.4 + 3.1 81.7 £ 1.7
CurGraph + GIN 77.1+2.4 62.5+3.9 81.3 + 1.7 80.1 + 2.0 74.7 £ 3.7 81.6 + 1.4

Table 3: Test Accuracy (%) of graph classification on social datasets. We perform 10-fold cross-validation to evaluate model
performance, and report the mean and standard derivations over 10 folds. We highlight best performances in bold.

Method COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K
GRAPHLET [47] 61.7 £2.2 548 + 4.1 42.6 £2.7 62.1 +1.6 362+ 1.8
WL [46] 70.4 + 1.8 69.1 + 3.5 454+ 29 81.7+ 1.7 49.4 + 2.1
DGCNN [68] 711+ 1.7 69.2+ 2.8 45.6 + 3.4 87.6 = 2.1 498+ 1.9
DiffPool [65] 68.9 £2.2 68.6 £3.1 457 £ 3.4 89.2+1.8 536+ 1.4
EigenPool [33] 70.8 £ 1.9 70.4 + 3.3 47.2 +3.0 89.9 +1.9 545+ 1.7
GIN [63] 755+ 23 71.2 £3.9 485+ 3.3 89.8 + 1.9 56.1 £ 1.6
CurriculumNet [21] + GIN 758 £2.2 71.8 +3.7 494 £ 3.0 90.0 + 2.0 56.6 + 1.6
DCL [42] + GIN 76.2+ 2.4 72.1+4.0 49.8 +3.3 90.1+ 2.1 57.2+1.9
CurGraph + EigenPool 732+ 1.8 72.4 + 3.0 499 £3.1 914+ 1.9 56.2 + 1.7
CurGraph + GIN 77.8 £ 1.9 73.4 + 3.2 51.8 + 2.7 912+ 1.9 59.7 + 1.8

Table 4: Test Accuracy (%) of graph classification with heuristic curriculum designs. We perform 10-fold cross-validation to
evaluate model performance, and report the mean and standard derivations over 10 folds.

Method D&D NCI1 NCI109 Mutagencity COLLAB IMDB-M REDDIT-5K
GIN [63] 754 + 2.6 79.7 + 1.8 782+ 2.1 799 + 1.4 755+ 2.3 48.5+3.3 56.1 + 1.6
CurGraph (w. #Nodes) + GIN 75.6 £ 2.6 79.7 £ 1.8 78.4+ 2.0 80.0 £ 1.5 755+ 2.3 48.6 + 3.1 56.2 + 1.7
CurGraph (w. #Edges) + GIN 755+ 2.5 799 + 1.9 783+ 2.2 80.0 = 1.4 75.6 £ 2.1 48.5+3.2 56.3 + 1.8
CurGraph (Ours) + GIN 77.1+ 2.4 81.3 + 1.7 80.1 + 2.0 81.6 + 1.4 77.8 £ 1.9 51.8 £ 2.7 59.7 + 1.8

where Tpnqax is the maximum epoch number specified by the GNN
model in use.

4.1 Graph Classification

We follow [63], [18] to use the 10-fold cross-validation scheme
to calculate the classification performance for a fair comparison.
For each training fold, as suggested by [18], we conduct an inner
holdout technique with a 90%/10% training/validation split. In de-
tail, we train fifty times on a training fold holding out a random
fraction (10%) of the data to perform early stopping. These fifty sep-
arate trials are needed to smooth the effect of unfavorable random

weight initialization on test performances. The final test fold score
is obtained as the mean of these fifty runs.

We report the average and standard deviation of test accuracy
across the 10 folds within the cross-validation on the chemical
and social datasets in Table 2 and 3 respectively. On the chemical
datasets, we observe that CurGraph improves the test accuracy of
EigenPool by 3.6% on D&D, 3.8% on ENZYMES, 2.4% on NCI1, 2.3%
on NCI109, 1.8% on PROTEINS, and 1.9% on Mutagencity respec-
tively. In addition, CurGraph improves GIN by 2.3% on D&D, 3.6% on
ENZYMES, 2.0% on NCI1,2.6% onNCI109, 1.6% on PROTEINS, and 2.1%
onMutagencity. On the social datasets, CurGraph improves Eigen-
Pool by more than 3% on COLLAB, IMDB-M, REDDIT-5K, and more
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Figure 4: The heuristic difficulty metrics #Nodes and #Edges
averaged for the graphs in each bucket. The graph buckets
are given by CurGraph with S = 8. The number of graphs in
each bucket are shown by the bars’ lengths and the numbers
over the bars.

than 2% on IMDB-B and REDDIT-B. Besides, CurGraph improves
GIN by more than 3% on COLLAB, IMDB-B, IMDB-M, REDDIT-5K, and
1.6% on REDDIT-B. As a result, CurGraph enhances EigenPool and
GIN to outperform all the benchmark methods.

Taking a closer look, we observe that the graph kernel methods,
GRAPHLET and WL, generally present worse performance than the
GNN methods. This demonstrates the stronger fitting capacity of
the advanced neural network models. Both CurriculumNet and DCL
achieve improvements over GIN, which validates the idea of cur-
riculum learning on the task of graph classification. Our CurGraph

Yiwei, et al.

Table 5: Test Accuracy (%) of graph classification with and
without our smooth-step learning method.

Method | NCI109 COLLAB
EigenPool [33] 77.4 70.8

+ CurGraph (w.o. smooth-step) | 78.5 (+1.1)  72.4 (+1.6)
+ smooth-step 79.2 (+1.8) 73.2 (+2.4)

GIN [63] 78.2 75.5
+ CurGraph (w.o. smooth-step) | 79.4 (+1.2)  76.9 (+1.4)
+ smooth-step 80.1 (+1.9) 77.8 (+2.3)

gains higher improvements on the test accuracy than Curriculum-
Net and DCL. The reasons are as follows. CurriculumNet evaluates
the difficulty scores by the distribution of the examples in each cat-
egory separately, but does not consider the inter-class distributions
as we do. However, similar graphs belonging to different classes
can mislead the GNN model to make wrong predictions and thus
indicate higher difficulty. Besides, CurriculumNet makes hard tran-
sitions between different training stages without our smooth-step
learning method. Last but not least, we utilize the state-of-the-art
infomax method to extract graph embeddings and advanced neural
density estimator to model embedding distributions instead of the
simple clustering in CurriculumNet. DCL introduces the extra class-
level and instance-level parameters to enable the neural networks
to learn the difficulty values automatically during training. These
redundant parameters increase the risks of over-fitting, which is
validated by their higher std. values.

4.2 Comparison with Heuristic Curriculum
Design

On the difficulty evaluation of different graphs, we compare our
CurGraph with two heuristic curriculum designs. In principle, we
use #Nodes and #Edges as the heuristic difficulty metrics. We define
difficult graphs as those of greater numbers of nodes or edges,
since more nodes and edges generally imply more complex graph
structures, indicating higher recognition difficulty. We show #Nodes
and #Edges averaged in graph buckets split by CurGraph in Fig. 4
We observe the difficult graphs provided by our CurGraph tend to
hold more nodes and edges.

We implement CurGraph with #Nodes and #Edges as the heuris-
tic difficulty metrics, of which the graph classification accuracy is
presented in Table 4. The results show that even with the simple
metrics #Nodes and #Edges, our CurGraph achieves improvements
in effectiveness over GIN. Our infomax curriculum design makes
CurGraph achieve much higher advancements than the heuristic
metrics, since CurGraph evaluates the difficulty scores of miscel-
laneous graphs in the high-level semantic space and utilizes our
principled statistical difficulty measurements. Compared with the
heuristics, our CurGraph correlates with the difficulty ‘preference’
of GNNs and generalizes to GNNs better.

4.3 Ablation Study

We conduct a number of ablations to analyze CurGraph. First, we
investigate the effects of the smooth-step curriculum learning. We
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Table 6: Test Accuracy (%) of graph classification of different
number of training stages S.

Method |s| Dpep NCI1 IMDB-M
2] 769+25 81.1+17 515+27
4(771+24 813+17 51.8+27
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Figure 5: The test accuracy (z-axis) of GIN with CurGraph
under different values of the hyper-parameters p and y.

compare the test accuracy of CurGraph implemented with and with-
out our smooth-step method on the NCI109 and COLLAB datasets in
Table 5. Without our smooth-step method, the classical curriculum
learning strategy with our difficulty evaluation methods achieve
significant improvements on EigenPool and GIN. This demonstrates
the effectiveness of our infomax curriculum design module. With
smooth-step, GNNs are enhanced further. This shows the soft tran-
sitions provided by our smooth-step method is advantageous and
helps the GNNs to be exposed to the samples of appropriate diffi-
culty levels.

In Table 6, we evaluate the sensitivity of CurGraph to the number
of training stages S. As we can see, the performance of CurGraph
implemented with GIN is generally smooth for S between 2 and
8. On all the three datasets, our default value of S = 4 achieves
satisfactory performance, which implies that our setting on S is
practical for graph classification.

Last but not least, we evaluate how sensitive our CurGraph is
to the selection of hyper-parameter values: p to control the transi-
tion speed of our smooth-step learning and y to adjust the penalty
weight for outliers in difficulty evaluation. As we can see, the perfor-
mance of GIN with CurGraph is relatively smooth when parameters
are within certain ranges. However, extremely large values of p and
y result in low performances in all cases, which should be avoided
in practice. Moreover, increasing p from 0.1 to 0.4 improves the
test accuracy of GIN with CurGraph, demonstrating that the soft
transitions provided by our smooth-step learning method play an
important role in improving the performance of GNN.

5 CONCLUSION

In this paper, we study the problem of exploring Curriculum Learn-
ing to strengthen the GNN models on graph classification. We
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propose a novel GNN framework that trains the GNNs in an easy-
to-difficult curriculum to improve their inference performance with-
out human heuristics or extra inference cost. CurGraph uses an
infomax method to obtain graph embeddings with GNNs and es-
timate the embedding densities using a neural density estimator.
CurGraph evaluates the graph difficulty from the intra-class and
inter-class embedding distributions. To provide the soft transitions
across different training stages corresponding to difficulty levels,
we design the smooth-step curriculum learning method. With the
smooth-step method, CurGraph enables a GNN to learn from the
graphs, which stand near the border of its capability, neither too
hard nor too easy, to gradually expand its border at each training
step. Our experimental results show that CurGraph yields signifi-
cant gains for graph classification evaluated on multiple benchmark
datasets. Future work can explore applying Curriculum Learning
to more general graph-related tasks beyond graph classification,
to further increase the effectiveness and practical utility of graph
neural networks.
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A MORE DETAILS ABOUT EXPERIMENTS
FOR REPRODUCIBILITY

To support the reproducibility of the results in this study, we intro-
duce the details of our experimental settings.

A.1 Datasets and Software Versions

We download the D&D [15], ENZYMES [45],NCI1,NCI109 [56], PROTEINS

[8], COLLAB, IMDB-B, IMDB-M, REDDIT-B, and REDDIT-5K [64] datasets
from the website!. PROTEINS and D&D are two protein graph datasets,
where nodes represent the amino acids and two nodes are connected
by an edge if they are less than six Angstroms apart. The label indi-
cates whether or not a protein is a non-enzyme. NCI1 and NCI109
are two biological datasets screened for activity against non-small
cell lung cancer and ovarian cancer cell lines, where each graph is
a chemical compound with nodes and edges representing atoms
and chemical bonds, respectively. ENZYMES is a dataset of protein
tertiary structures, and each enzyme belongs to one of the six EC
top-level classes.

REDDIT-B is a balanced dataset where each graph corresponds to
an online discussion thread where nodes correspond to users, and
there is an edge between two nodes if at least one of them responded
to another’s comment. The collectors crawled top submissions from
four popular subreddits, namely, IAmA, AskReddit, TrolIXChromo-
somes, and atheism. IAmA and AskReddit are two question/answer
based subreddits, and TrollXChromosomes and atheism are two
discussion-based subreddits. The task is then to identify whether a
given graph belongs to a question/answer-based community or a
discussion-based community. REDDIT-5K is a balanced dataset from
five different subreddits, namely, worldnews, videos, AdviceAni-
mals, aww and mildlyinteresting where the collectors simply label
each graph with their correspondent subreddit.

COLLAB is a scientific collaboration dataset, derived from three
public collaboration datasets, namely, High Energy Physics, Con-
densed Matter Physics and Astro Physics. The collectors generated
ego-networks of different researchers from each field, and labeled
each graph as the field of the researcher. The task is then to deter-
mine whether the ego-collaboration graph of a researcher belongs
to the High Energy, Condensed Matter, or Astro Physics field.

IMDB-B is a movie collaboration dataset where we collected ac-
tor/actress and genre information of different movies on IMDB. For
each graph, nodes represent actors/actresses and there is an edge
between them if they appear in the same movie. The collectors
generated collaboration graphs on Action and Romance genres and
derived ego-networks for each actor/actress. Note that a movie can
belong to both genres at the same time, therefore the collectors
discarded movies from the Romance genre if the movie is already
included in the Action genre. Similar to COLLAB dataset, we sim-
ply labeled each ego-network with the genre graph it belongs to.
The task is then simply to identify which genre an ego-network
graph belongs to. IMDB-M is the multi-class version of IMDB-B and
contains a balanced set of ego-networks derived from Comedy,
Romance, and Sci-Fi genres.

Regarding software versions, we install CUDA 10.0 and cuDNN
7.0. TensorFlow 1.12.0 and PyTorch 1.0.0 with Python 3.6.0 are used.

Uhttps://chrsmrrs.github.io/datasets/
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Note that all the experiments are running a Linux Server with the
Intel(R) Xeon(R) E5-1650 v4 @ 3.60GHz CPU, and the GeForce GTX
1080 Ti GPU.

A.2 Settings of the Baseline

When implementing graph neural networks as the benchmark and
implementing it with CurGraph, we follow the the suggested set-
tings and utilize the early stopping training strategy: stop opti-
mization if the validation loss is larger than the mean of validation
losses of the last 50 epochs. We utilize 5 GNN layers (including the
input layer), and MLPs of 2 layers. Batch normalization is applied
on every hidden layer. We use the Adam optimizer with an initial
learning rate 0.01 and decay the learning rate by 0.5 every 50 epochs.
The hyper-parameters we tune for each dataset are: (1) the number
of hidden units belonging to 16, 32 for chemical graphs and 64 for
social graphs; (2) the batch size belonging to 32, 128; (3) the dropout
ratio belonging to 0, 0.5 after the dense layer; (4) the number of
epochs, i.e., a single epoch with the best cross-validation accuracy
averaged over the 10 folds was selected.

We refer to the following websites when implementing the above
mentioned models:

(1) GRAPHLET: https://github.com/nkahmed/PGD
(2) WL: https://github.com/BorgwardtLab/P-WL

(3) GCN: https://github.com/tkipf/gen

(4) DGCNN: https://github.com/muhanzhang/DGCNN
(5) DiffPool: https://github.com/RexYing/diffpool

(6) EigenPool: https://github.com/alge24/eigenpooling
(7) GIN: https://github.com/weihua916/powerful-gnns
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