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ABSTRACT
Given a bipartite graph of users and the products that they review,
or followers and followees, how can we detect fake reviews or fol-
lows? Existing fraud detection methods (spectral, etc.) try to iden-
tify dense subgraphs of nodes that are sparsely connected to the re-
maining graph. Fraudsters can evade these methods using camou-
flage, by adding reviews or follows with honest targets so that they
look “normal”. Even worse, some fraudsters use hijacked accounts
from honest users, and then the camouflage is indeed organic.

Our focus is to spot fraudsters in the presence of camouflage
or hijacked accounts. We propose FRAUDAR, an algorithm that
(a) is camouflage-resistant, (b) provides upper bounds on the ef-
fectiveness of fraudsters, and (c) is effective in real-world data.
Experimental results under various attacks show that FRAUDAR
outperforms the top competitor in accuracy of detecting both cam-
ouflaged and non-camouflaged fraud. Additionally, in real-world
experiments with a Twitter follower-followee graph of 1.47 billion
edges, FRAUDAR successfully detected a subgraph of more than
4000 detected accounts, of which a majority had tweets showing
that they used follower-buying services.

1. INTRODUCTION
How can we detect if a politician has purchased fake follow-

ers on Twitter, or if a product’s reviews on Amazon are genuine?
More challengingly, how can we provably prevent fraudsters who
sell fake followers and reviews for various web services from evad-
ing our detection systems? In this paper we focus on precisely this
problem – specifically, how can we design a fraud detection system
with strong, provable guarantees of robustness?

Given the rise in popularity of social networks and other web ser-
vices in recent years, fraudsters have strong incentives to manipu-
late these services. On several shady websites, anyone can buy fake
Facebook page-likes or Twitter followers by the thousands. Yelp,
Amazon and TripAdvisor fake reviews are also available for sale,
misleading consumers about restaurants, hotels, and other services
and products. Detecting and neutralizing these actions is important
for companies and consumers alike.

The tell-tale sign of such fraudulent actions is that fraudsters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939747

must add many edges, creating unusually large and dense regions in
the adjacency matrix of the graph (see Figure 2). Smart fraudsters
will also try to ‘look normal’, by adding links to popular items/idols
(like famous singers/actors, or well-liked products) - this behavior
is called “camouflage” in the recent literature. State-of-the-art algo-
rithms, such as SPOKEN [23] and NETPROBE [21] exploit exactly
the density signal, but do not account for “camouflage.”

We propose FRAUDAR, a novel approach for successfully de-
tecting fraudsters under camouflage, and we give provable limits on
undetectable fraud. We provide data-dependent limits on the max-
imum number of edges a group of fraudulent adversaries can have
without being detected, on a wide variety of real world graphs. As
shown in Figure 1(a), FRAUDAR provides limits on undetectable
fraud, and additionally provides novel optimizations that strengthen
this bound.

Moreover, our method outperforms competitors and finds real
world fraud on Twitter. In Figure 1(b) we find that FRAUDAR
detects injected fraud with high accuracy, even in the case of cam-
ouflage, where prior methods struggle to detect fraudulent attacks.
Additionally, when tested on a Twitter graph from 2009, FRAU-
DAR finds a 4031 by 4313 subgraph that is 68% dense. As shown
in Figure 1(c-d), we find that a majority of the detected accounts
had tweets showing that they used follower-buying services, and
had gone undetected by Twitter for the 7 years since the data was
collected. Finally, our method is scalable, with near linear runtime
in the data size.

Thus, our main contributions are as follows:
• Metric: we propose a novel family of metrics which satis-

fies intuitive “axioms” and has several advantages as a suspi-
ciousness metric.
• Theoretical Guarantees: we provide a provable bound on

how much fraud an adversary can have in the graph with-
out being caught, even in the face of camouflage. Addition-
ally, we improve the theoretical bound through novel opti-
mizations that better distinguish fraud and normal behavior
in real-world data.
• Effectiveness: FRAUDAR outperforms state-of-the-art meth-

ods in detecting various fraud attacks in real world graphs,
and detects a large amount of previously undetected fraudu-
lent behavior on Twitter.
• Scalability: FRAUDAR is scalable, with near-linear time

complexity in the number of edges.
Furthermore, FRAUDAR offers natural extensibility and can

easily incorporate more complex relations available in certain con-
texts such as review text, IP addresses, etc.
Reproducibility: Our code is open-sourced at www.andrew.cmu.
edu/user/bhooi/camo.zip.
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(a) Our theoretical bound on detectable region (b) FRAUDAR outperforms competitors

(c) FRAUDAR detects many confirmed fraudsters (d) Sample fraudster detected

Figure 1: (a) Our theoretical thresholds: fraudsters in the detection region will be caught by our approach. Our novel optimizations
improve the (data-dependent) bounds by lowering it to the green region. (b) Fraudar outperforms competitors. (c) A large fraction
of accounts flagged by our algorithm are confirmed fraudsters: both among detected followees (left red bar) and followers (right red
bar) compared to almost none among non-flagged accounts (2 control groups). Confirmation was done by inspecting Tweets that advertise
TweepMe or TweeterGetter. (d) Real-life results - a sample fraudster caught.

2. BACKGROUND AND RELATED WORK
Fraud detection has received significant focus in recent years.

Many existing methods aim to detect fraud through review text
[13, 20]. However, these approaches are typically not adversarially
robust: spammers can carefully select their review texts to avoid de-
tection. Even without knowledge of the detection system, they may
mimic normal user reviews as closely as possible. Graph-based
approaches detect groups of spammers, often by identifying unex-
pectedly dense regions of the graph of users and products. Such
methods are potentially harder to evade, as creating fake reviews
unavoidably generates edges in the graph. Graph-based methods
may be classified into global and local methods.
Global methods: Building on singular value decomposition (SVD),
latent factor models, and belief propagation (BP), these model the
entire graph to find fraud. SPOKEN [23] considered the “eigen-
spokes” pattern produced by pairs of eigenvectors of graphs, and
was later generalized for fraud detection [12]. FBOX [25] builds

on SVD but focuses on detecting attacks missed by spectral tech-
niques. Several methods have used HITS [15]-like ideas to detect
fraud in graphs [3,6,9,11,30]. BP has been used for fraud classifi-
cation on eBay [21], and fraud detection [1]. All of these methods
have been successful in finding fraud but they offer no guarantees
of robustness. [25] performs adversarial analysis for spectral algo-
rithms, showing that attacks of small enough scale will necessarily
evade detection methods which rely on the top k SVD components.
Local clustering methods: A different direction for fraud detec-
tion focuses on local subgraphs, by analyzing the properties of
egonets to detect fraud [5,22]. COPYCATCH [2] and GETTHESCOOP
[12] use local search heuristics to find relevant dense bipartite sub-
graphs. However, without guarantees on the search algorithm, the
algorithms may not be robust to intelligent adversaries.
Dense subgraph mining: Finding dense subgraphs has been an
important focus of graph theory communities and has been stud-
ied from a wide array of perspectives [7, 14]. Most closely related



(a) Attacks with random camouflage (b) Attacks with biased camouflage (c) Hijacked accounts

Figure 2: Three examples of possible attacks.
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Detects dense blocks X X X X X X X
Camouflage-resistant X ? ? X

Theoretical guarantees X

Table 1: Comparison between FRAUDAR and other fraud detec-
tion algorithms.

to ours is Charikar’s work on finding subgraphs with large aver-
age degree [4], which shows that subgraph average degree can be
optimized with approximation guarantees. Variants have been pro-
posed to efficiently find large, dense subgraphs [27], with approx-
imation guarantees. To our knowledge, however, this is the first
work which adapts this theoretical perspective to the challenges of
fraud detection and camouflage resistance, and achieves meaning-
ful bounds for our application. Moreover, our work differs from
these in its setting of bipartite graphs, and in the use of edge re-
weighting to further increase accuracy.
Social network-based Sybil defense: Multiple identity or ‘Sybil’
attacks pose problems of malicious behavior in distributed systems.
SybilGuard [32] and SybilLimit [31] use a decentralized random
walk approach to limit the number of Sybil attackers. SumUp [26]
and Iolaus [19] adapt this to content rating settings. However, these
systems rely on a separate trust network between users; our setting
is fundamentally different as our approach works directly with the
user-product bipartite graph.
Handling camouflage: [8, 28] consider fraud detection methods
that are robust to camouflage attacks. However, both methods focus
on the time-series domain, observing changes in the behavior of
fraudsters from system access logs rather than graph data.

A comparison between FRAUDAR and other fraud detection al-
gorithms is summarized in Table 1. Our proposed method FRAU-
DAR is the only one that matches all specifications.

3. PROBLEM DEFINITION
Consider a set of m users U = {u1, . . . , um} and n objects
W = {w1, . . . , wn} connected according to a bipartite graph G =

Symbol Interpretation

U = {u1, . . . , um} Users
W = {w1, . . . , wn} Objects

V Nodes of bipartite graph: U ∪W
G Bipartite graph G = (V, E)
A Subset of users
B Subset of objects
S Subset of nodes, S = A ∪ B

g(S) Density metric
f(S) ‘Total suspiciousness’ metric (2)
X Current set of nodes in the greedy algorithm

∆i f(X \ {i})− f(X )

Â, B̂ Users (resp. objects) returned by FRAUDAR
m0, n0 No. of users (resp. objects) in fraud block

di ith column sum of adjacency matrix
λ Min. fraction of fraud edges per customer

glog Logarithmic weighted metric

Table 2: Symbols and Definitions

(U ∪W, E). We can consider the objects to be followees on Twit-
ter or products on Amazon. Table 2 gives a complete list of the
symbols we use throughout the paper. We now describe our attack
model and then our problem definition.

Attack model.
We assume that fraudsters are hired to use users they control to

add edges pointing to a subset of nodes inW . For example, a busi-
ness may pay for followers on Twitter or positive reviews on Yelp.
In general, fraudsters add a large number of edges, inducing a dense
subgraph between the fraudster accounts and customers, as shown
in the bottom right corner of each subplot of Figure 2. This gen-
eral characteristic of fraud was found to be true in our experiments
on real datasets, as well as in many other papers which use dense
blocks to detect fraud [1, 2, 12, 21, 23].

To mask the fraud, fraudster accounts can add arbitrary “camou-
flage”, i.e. edges pointing from their user accounts to any of the
nodes inW that are not customers. We assume that fraudsters have
complete knowledge of the graph and fraud detection mechanisms,
enabling worst-case camouflage for any fraud detection system we
create. Examples of the possible types of camouflage are given in
Figure 2: (a) adding camouflage edges to random honest users, (b)
camouflage biased toward high degree nodes, (c) using hijacked ac-



counts, whereby fraudster accounts have realistic patterns of cam-
ouflage essentially similar to that of honest users.

While it is trivial for fraud accounts to add edges to any other
node, it is more difficult for customer accounts to get honest edges.
In particular, we assume that a customer would try to increase their
number of incoming edges by a significant portion, and as a result
a fraction, λ ∈ [0, 1], of their incoming edges will be from fraud-
sters. This assumption would manifest itself as customers wanting
to boost their follower count to seem noticeably more popular or a
restaurant wanting a significant number of positive ratings to shift
its average “number of stars” on Yelp. We will demonstrate how
using this real world pattern significantly improves fraud detection
both theoretically and in practice.

Desired properties of detection approach.
Our goal is to detect dense subgraphs in G, typically indicative

of fraudulent groups of users and objects, like in the bottom-right
of Figure 2.

INFORMAL PROBLEM 1.
Given a bipartite graph, detect attacks so as to minimize the num-
ber of edges that fraudsters can add pointing to customers without
being detected.

Given that we want our detection algorithm to be able to handle
camouflage, we define the requirements for a camouflage-resistant
algorithm:

DEFINITION 1. Let (A,B) be a block consisting of fraudulent
users and objects. A density metric g is camouflage-resistant if
when any amount of camouflage is added by the adversary, g(A ∪
B) does not decrease.

That is, fraudsters cannot make themselves less suspicious by adding
camouflage. Our goal is to find a fraud detection approach satisfy-
ing the following criteria:

PROBLEM DEFINITION 1 (DENSE SUBGRAPH DETECTION).
Design a class of density metrics for bipartite graphs, which can be
optimized (1) in near-linear time, (2) within a constant factor of the
optimum, and (3) is minimally affected by camouflage edges added
by adversaries.

Obtaining theoretical guarantees on the near-optimality of the
returned subgraph is important because, as we will later show, it
allows us to offer guarantees against worst-case fraudsters.

4. PROPOSED METHOD
Given this problem definition and attack model, we now offer

FRAUDAR and our theoretical analysis of FRAUDAR.

4.1 Metric
In this section, we propose a class of metrics g that have par-

ticularly desirable properties when used as suspiciousness metrics.
Namely, we will show that if g takes the form in (1) and (2), then it
can be optimized in a way that is (a) scalable; (b) offers theoretical
guarantees, and (c) is robust to camouflage.

Let A ⊆ U be a subset of users and B ⊆ W be a subset of ob-
jects. Let S = A ∪ B, and V = U ∪W . For the rest of this paper,
we use g to denote the density metric that the algorithm will opti-
mize, i.e. the algorithm will find S to (approximately) maximize
g(S). Note that g has a single argument, which is the union of the
users and objects whose suspiciousness we are evaluating.

We propose using density metrics g of the following form:

g(S) =
f(S)

|S| (1)

where total suspiciousness f is:

f(S) = fV(S) + fE(S)

=
∑
i∈S

ai +
∑

i,j∈S∧(i,j)∈E

cij , (2)

for some constants ai ≥ 0 and constants cij > 0.
Intuitively, the node suspiciousness fV(S) is a sum of constants

ai corresponding to the users and objects in S, which can be thought
of as how individually suspicious that particular user or object is.
The edge suspiciousness fE(S) is a sum of constants cij corre-
sponding to the edges in between S, which can be thought of as
how suspicious that particular edge is (e.g. the suspiciousness of
the text of a review by user i for object j).

There are many advantages to metrics of this form. Firstly, met-
rics of this form can be optimized in a way that is (a) scalable; (b)
offers theoretical guarantees, and (c) is robust to camouflage, as we
demonstrate in the rest of this paper. All 3 of these properties hold
due to the particular chosen form in (1) and (2).

Secondly, metrics of this form obey a number of basic proper-
ties (or “axioms”) that we would intuitively expect a reasonable
suspiciousness metric should meet, as we next show. These basic
properties are adapted from the “axioms for suspiciousness met-
rics,” proposed in [10], to our setting where node and edge weights
exist.

AXIOM 1 (NODE SUSPICIOUSNESS). A subset consisting of
higher suspiciousness nodes is more suspicious than one consist-
ing of lower suspiciousness nodes, if the other conditions are fixed.
Formally,

|S| = |S ′| ∧ fE(S) = fE(S ′) ∧ fV(S) > fV(S ′)⇒ g(S) > g(S ′)

AXIOM 2 (EDGE SUSPICIOUSNESS). Adding edges within a
subset increases the suspiciousness of the subset if the other condi-
tions are fixed. Formally,

e /∈ E ⇒ g(S(V, E ∪ {e})) > g(S(V, E))

where S(V, E) is the subgraph induced by S in the graph (V, E).
The edge density ρ(S) of an induced subgraph is its number of

edges divided by its maximum possible number of edges.

AXIOM 3 (SIZE). Assuming node and edge weights are all
equal, larger subsets are more suspicious than smaller subsets with
the same edge density. Formally, given ai = a ∀ i, and cij =
b ∀ (i, j) ∈ E:

|S| > |S ′| ∧ S ⊃ S ′ ∧ ρ(S) = ρ(S ′)⇒ g(S) > g(S ′)

AXIOM 4 (CONCENTRATION). A subset with smaller size is
more suspicious than one with the same total suspiciousness but
larger size. Formally,

|S| < |S ′| ∧ f(S) = f(S ′)⇒ g(S) > g(S ′)

Density metrics g of the form defined in Equation (1) satisfy
these properties:

THEOREM 1. The density metric defined in (1) satisfies axioms 1
to 4.

PROOF. See appendix A. �

Note some simple metrics that violate these axioms: the edge
density ρ(S) itself, as a metric, does not increase with the size of
S and hence violates axiom 3. On the opposite end, the total edge



weight function
∑
i,j∈S∧(i,j)∈E cij as a metric violates axiom 4

as it does not consider how concentrated the edge weight is. In
contrast, g scales in a reasonable manner as its size or concentration
changes.

A simple example of a metric g as defined in (1) and (2) is the
bipartite graph average degree:

EXAMPLE 1. (Bipartite Graph Average Degree) Let ai = 0,
and let cij = 1 if (i, j) ∈ E and 0 otherwise. In the expression
(2) for f(S), we add one term cij for each edge (i, j) for which
i, j are both in the subset S. Thus, f(S) is equal to the number
of edges in the subgraph spanned by S, or half the total degree in
the subgraph spanned by S. As a result, g(S) = f(S)

|S| is half the
average degree of the subgraph spanned by S.

4.2 Algorithm
Let f and g be as given in (1) and (2). In this section, we give an

algorithm for optimizing the density metric g in near-linear time.
Algorithm 0 describes our proposed FRAUDAR algorithm, a

greedy approach inspired by that of [4] but which covers our broader
objective class. We start with the entire set of nodes U ∪ W , then
repeatedly remove the node which results in the highest value of g
evaluated on the remaining set of nodes. Formally, denote byX the
current set we are optimizing over; initially we set X = U ∪ W .
Let ∆i = f(X \{i})−f(X ) be the change in f when we remove i
from the current set. At each step, we will select i to maximize ∆i,
i.e. to leave behind the set with highest value of f . We then remove
i from X . We then repeat this process: we recompute the values
of ∆j , then choose the next node to delete, and so on. This leads
to a shrinking series of sets X over time, denoted X0, . . . ,Xm+n

of sizes m + n, . . . , 0. At the end, we return the one of these that
maximizes the density metric g.

The key fact that allows the algorithm to be efficient is the forms
for f and g in (1) and (2). When i is removed, the only values of
∆j which need to be updated are those where j is a neighbor of i.
This is because for all other j, the expressions (1) and (2) ensure
that ∆j does not change. Hence, the updates are fast: for each
(i, j) ∈ E , over the lifetime of the algorithm we will perform at
most one such update over this edge, for a total of O(|E|) updates.
Using appropriate data structures, as we next describe, each update
can be performed inO(log |V|) time, totallingO(|E| log |V|) time.

Priority Tree.
Each element i ∈ X has a priority that will change as the al-

gorithm progresses: the priority of element i at the tth iteration is
∆i = f(Xt \ {i}) − f(Xt). This ensures that in Line 5, the el-
ement i∗ = arg maxi∈Xt g(Xt \ {i}) we wish to find is exactly
the element of highest priority, allowing us to retrieve it quickly (in
O(log |V|) time, as we explain below). Note that it does not matter
if we use f or g in the arg max since the denominator of g in (1),
|Xt \ {i}|, is the same for all possible deletions i.

These priorities are stored in the priority tree T constructed in
line 2 of Algorithm 0. This data structure is a binary tree with all
|V| elements as leaves, all at the bottom level of the tree. Each in-
ternal node keeps track of the maximum priority of its two children.

The priority tree supports fast retrieval of the maximum priority
element (used in Line 5 of Algorithm 0); it does this by starting at
the root and repeatedly moving to the child with higher priority. It
also supports quickly updating priorities: since all the leaves can be
stored in fixed locations, we can easily retrieve the leaf at any index
to update its priority. Then, after updating that node’s priority, we
travel up the tree to update each parent up to the root (used in Line
6). Each of these operations on T takes O(log |V|) time.

Scalability.
The bottleneck is the loop in Lines 5 to 7 which runs m + n

times. Lines 5 and 6 take O(log |V|) as discussed, while Line 7 is
constant time. Finally, we need |E| updates to node priorities, one
for each edge. Thus the algorithm takes O(|E| log |V|) time.

4.3 Theoretical Bounds
So far, we have shown that g can be optimized in near-linear

time. In this section, we will show that when f and g are of the
form (1) and (2), FRAUDAR is guaranteed to return a solution of
at least half of the optimum value.

THEOREM 2. Let A,B be the set of users and objects returned
by FRAUDAR. Then:

g(A ∪ B) ≥ 1

2
gOPT

where gOPT is the maximum value of g, i.e.

gOPT = max
A′,B′

g(A′ ∪ B′)

PROOF. Let the elements of V be labeled v1, v2, . . . , vm+n. We
define ‘weight assigned to node vi in S’ as

wi(S) = ai +
∑

(vj∈S)∧((vi,vj)∈E)

cij +
∑

(vj∈S)∧((vj ,vi)∈E)

cji

where ai(≥ 0) indicates the weight of node vi and cij(> 0) in-
dicates that of edge (vi, vj) as in (2). Note that when node vi is
removed from the current set S at some point in the algorithm,
wi(S) is the decrease in the value of f , since it is the sum of all
terms excluded in (2) when node vi is removed.

Now consider the optimal set S∗. For each node vi ∈ S∗, we
claim that wi(S∗) ≥ g(S∗). Otherwise, removing a node with
wi(S∗) < g(S∗) results in

g′ =
f(S∗)− wi(S∗)
|S∗| − 1

>
f(S∗)− g(S∗)
|S∗| − 1

=
f(S∗)− f(S∗)/|S∗|

|S∗| − 1
= g(S∗),

which is a contradiction.
Let vi be the node that FRAUDAR removes first among those

in S∗, and let S ′ be the set before FRAUDAR removes vi. Then,
since S ′ ⊃ S∗, wi(S ′) ≥ wi(S∗). Moreover, since FRAUDAR
chooses to remove node vi, for each of the other remaining nodes
vj ∈ S ′, wj(S ′) ≥ wi(S ′). Since each term in f(S ′) can be
assigned to at most two nodes, summing over j gives f(S ′) ≥
|S′|wi(S′)

2
. Also note that g(A ∪ B) ≥ g(S ′) since FRAUDAR

returns the best solution that it encounters. We conclude that

g(A ∪ B) ≥ g(S ′) =
f(S ′)
|S ′| ≥

wi(S ′)
2

≥ wi(S∗)
2

≥ g(S∗)
2

.

�

4.4 Edge Weights and Camouflage Resistance
So far, we have seen that metrics of the form: g(S) = f(S)

|S| ,
where f(S) =

∑
i∈S ai +

∑
i,j∈S∧(i,j)∈E cij can be optimized

efficiently and with approximation guarantees. In this section, we
show how we can select metrics within this class that are resis-
tant to camouflage, i.e. they do not allow fraudulent users to make
themselves less suspicious by adding camouflage edges, i.e. edges
toward honest objects.

Recall that ai and cij are the weights of node i and edge ij,
while f(S) is the total node and edge weight in S. A key idea of



Algorithm 1 FRAUDAR, which greedily removes nodes to maximize a metric g. Line 5 and 6 run inO(log |V|) time, using a data structure
described in Section 4.2.
Require: Bipartite G = (U ∪W, E); density metric g of the form in (1)
1: procedure FRAUDAR (G, g)
2: Construct priority tree T from U ∪W . see Section 4.2
3: X0 ← U ∪W . suspicious set is initially the entire set of nodes U ∪W
4: for t = 1, . . . , (m+ n) do
5: i∗ ← arg maxi∈Xi g(Xi \ {i}) . exonerate least suspicious node
6: Update priorities in T for all neighbors of i∗

7: Xt ← Xt−1 \ {i∗}
8: end for
9: return arg maxXi∈{X0,...,Xm+n} g(Xi) . return most suspicious set Xi

10: end procedure

our approach is that instead of treating every edge equally, we as-
sign a lower weight cij when the target object j has high degree.
This is because objects of very high degree are not necessarily sus-
picious (since highly popular objects commonly exist). Thus, this
weighting allows us to put greater emphasis on objects within un-
expectedly dense subgraphs, rather than just high degree objects.

If we consider the adjacency matrix with rows representing users
and columns representing objects, we would like to downweight
columns with high column sum (column-weighting). A simple re-
sult we show in this section is that column-weightings are cam-
ouflage resistant. Recall that a density metric g is camouflage-
resistant if g(A ∪ B) does not decrease when any amount of cam-
ouflage is added by an adversary with fraudulent users A and cus-
tomers B. Let di be the the ith column sum, i.e. the degree of
object i.

Formally, define a column-weighting as a choice of weighting
in which each cij is a function of the respective column sum, i.e.
cij = h(dj) for some function h.

THEOREM 3. Let cij be a column-weighting. Then g (as de-
fined in (1) and (2)) is camouflage resistant.

PROOF. Adding camouflage only adds edges in the region be-
tween A (fraudulent users) and BC (honest objects). It does not
add or remove edges within the fraudulent block; moreover, the
weights of these edges do not change either as their weights only
depend on the column degrees of B, which do not change when
camouflage is added. Thus the value of g does not change. �

A natural follow-up question is whether camouflage-resistance
also holds for row-weightings (i.e. selecting cij to be a function of
the corresponding row sum). It turns out that row-weightings are
in general not camouflage resistant. This is because a fraudulent
user account can add a large number of camouflage edges, thereby
increasing their row sum, decreasing the weight of each of their
edges. Thus g(A∪B) decreases, meaning that g is not camouflage
resistant.

Hence we may choose any column-weighting while ensuring
camouflage resistance. The remaining question is what function
to choose for the column-weighting, i.e. the function h where
cij = h(dj). It should be decreasing (so as to downweight columns
with high sum). It should shrink more slowly than h(x) = 1/x,
since h(x) = 1/x allows a single edge to contribute as much as the
total contribution of a column with any number of edges, causing
us to catch columns with single ones rather than dense blocks.

Within the remaining space of choices, we note that a very simi-
lar problem of downweighting based on column frequency appears
in deciding the form of the ‘inverse document frequency’ term of
the popular heuristic tf-idf weighting scheme [24], in which loga-

rithmic weighting of frequency has been empirically found to per-
form well. We also show empirical results (in Section 5.1) that
logarithmic weighting leads to strong theoretical bounds. For these
reasons, we recommend using h(x) = 1/ log(x + c), where c is
a small constant (set to 5 in our experiments) to prevent the de-
nominator from becoming zero, or excessive variability for small
values of x. We use the resulting density metric (denoted glog) in
our experiments.

4.5 Implications: Bounding Fraud
Figure 1(a) shows curves representing our theoretical bounds on

the maximum amount of fraud that can be present for each possible
size of the fraudulent block, based on Theorem 2. We now explain
how such bounds can be computed from Theorem 2. Assume that
the fraudulent block contains m0 user accounts and n0 customers.

In this section, we assume that no side information is present,
so we set the ai, the prior suspiciousness of each node, to 0. Thus
here glog(S) = 1

|S|
∑
i,j∈S

1
log(dj+c)

, where dj is the degree of
the jth object. Consider a fraudulent subgraph with m0 user nodes
and n0 object nodes. Assume that each fraudulent customer has at
least a certain fraction 0 < λ < 1 of fraudulent edges: each fraud-
ulent customer should be receiving at least a comparable fraction of
fraudulent reviews to its actual honest reviews, otherwise it would
not be profiting appreciably from the fraud.

THEOREM 4. Let (Â, B̂) be the block detected by FRAUDAR.
Then the number of edges that a fraudulent block of size (m0, n0)

can have without being detected is at most 2(m0 + n0)glog(Â ∪
B̂) log(m0/λ + c). In other words, our algorithm will detect a
fraudulent block without fail if it contains more edges than this
threshold.

PROOF. By Theorem 2, 2glog(Â ∪ B̂) is an upper bound on the
value of glog on any subgraph of users and objects. Since the fraud-
ulent block hasm0+n0 nodes in total, thus 2(m0+n0)glog(Â∪B̂)
is an upper bound on the value of total suspiciousness flog.

Moreover, each fraudulent customer has at most m0 fraudulent
edges joined to it, and since at least λ fraction of its edges must
be fraudulent, it can have at most m0/λ degree in total. Hence
the weight of each fraudulent edge is at least 1

log(m0/λ+c)
. But

since the total weighted degree is at most 2(m0 +n0)glog(Â ∪ B̂),
it follows that the number of fraudulent edges is at most 2(m0 +

n0)glog(Â ∪ B̂) log(m0/λ+ c). �

We apply this bound to real data in Section 5.1.



#
of

no
de

s

#
of

ed
ge

s

Den
sit

y

Con
ten

t

Amazon [18] 28K
(24K,4K)

28K 2.7e-4 Review

Trip
Advisor [29]

84K
(82K,2K)

90K 5.9e-4 Review

Epinion [17] 264K
(132K,132K)

841K 4.8e-5 Who-trust-
whom

Wiki-vote [17] 16K
(8K,8K)

103K 1.5e-3 Vote

Table 3: Bipartite graph datasets used in our experiments.

5. EXPERIMENTS
We design experiments to answer the following questions:

Q1. Illustration of our theorem: How strong are the bounds that
FRAUDAR provides in terms of bounding undetectable fraud in
the graph? Does column weighting improve those bounds?
Q2. Evaluation on synthetic data: How accurately does FRAU-
DAR detect injected fraud under different types of camouflage at-
tacks? Does FRAUDAR outperform state-of-the-art competitors?
Q3. Effectiveness in real-world data: Does FRAUDAR detect
true fraud in real-world graphs? Have the fraudulent accounts al-
ready been detected by previous methods?
Q4. Scalability: Is FRAUDAR scalable with regard to the data
size?

We implemented FRAUDAR in Python; all experiments were
carried out on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM,
running OS X 10.9.5. The code is available for download at www.
andrew.cmu.edu/user/bhooi/camo.zip. We test FRAUDAR on a
variety of real world datasets. Table 3 offers details on the datasets
we used.

To test the accuracy of our method, we use synthetic attacks
injected into our Amazon dataset. We structure our “attacks” as
shown in Figure 2. We injected a fraudulent block of users and
customers with varying densities. We assume λ = 0.5 for our the-
oretical bounds.

5.1 Q1. Illustration of our Theorem
In Figure 1 (a), we showed our theoretical bounds (Theorem

4) applied to compute the maximum number of edges an adver-
sary with m0 = 50 user nodes can have for various values of n0.
These are computed by running FRAUDAR under two weighting
schemes. First, we use our glog scheme exactly as in Theorem 4
to get an upper bound 2(m0 + n0)glog(Â ∪ B̂) log(m0/λ+ c) on
the number of fraudulent edges; plotting this against n0 gives the
green region (‘improved’) in Figure 1 (a). The blue region (‘orig-
inal’) comes from using the analogous procedure without the log-
weighting, i.e. where g(S) is half the average degree, as in Exam-
ple 1.

In this case, we see that the log-weighted scheme provides stronger
bounds, since the bound is lower, i.e. an adversary should have
fewer edges in order not to be detected. Intuitively, this happens
because down-weighting high degree columns decreases the weight
of many of the honest high degree objects in the dataset, so groups
of adversaries stand out more, resulting in stronger bounds on how
many edges an adversary can have.

Next, we apply our FRAUDAR in the same way over various
real-world graphs to analyze the theoretical upper bounds com-
puted by FRAUDAR on the density that fraudulent blocks can

Figure 3: FRAUDAR’s bounds on fraud are stringent, on real
graphs: E.g., on TripAdvisor, the bound says that a fraudulent
block containing 50 user accounts and anywhere between 100 and
1000 products must have density of < 2% to avoid detection.

have. We run FRAUDAR on four real-world graphs: Amazon [18],
Trip Advisor [29], Epinions [17], and Wiki-vote [17]. The detailed
description of each graph is in Table 3. For all datasets, Figure
3 shows the maximum number of fraudulent edges that an adver-
sary can have without being detected, assuming 50 fraudulent users
and varying the number of fraudulent customers. We see that we
can detect fraud most easily in Trip Advisor, followed by Epinion,
Wiki-vote, Amazon; even a fairly sparse block of density around
0.05 would stand out strongly in the Trip Advisor graph. While
density is important in determining how easy it is to detect fraud in
each graph (fraudulent blocks stand out more strongly in a sparse
graph), it is not the only factor. Indeed, Wiki-vote is actually denser
than Amazon. In fact, the difficulty of detecting fraud in each graph
is mainly determined by its densest blocks, since an adversarial
block that is significantly less dense than the densest normal blocks
in the graph is unlikely to be detected.

5.2 Q2. Evaluation on Synthetic Data
In Figure 1 (b), we demonstrated that FRAUDAR can effec-

tively detect fraud under four types of camouflage attacks: 1) In-
jection of fraud with no camouflage, 2) random camouflage, 3) bi-
ased camouflage and 4) hijacked accounts, more accurately than
competitors.

We conduct experiments based on the settings at the beginning
of this section, averaged over 5 trials. For the camouflage scenar-
ios 2) and 3), the amount of camouflage added per fraudulent user
account was (on average) equal to the amount of actual fraudulent
edges for that user. For the ‘Random Camo’ case, for each fake
user node, camouflage edges were chosen at random, with on av-
erage the same number of camouflage edges as fraudulent edges,
as shown in Figure 2 (a). For the ‘Biased Camo’ case, for each
fake user node, camouflage edges were directed toward each object
with probability proportional to the degree of the object as shown
in Figure 2 (b). For the ‘Hijacked’ case, we used a random subset
of existing users to form the fraudulent block.

In each case, we injected 200 fraudulent users and 200 fraudu-
lent products with various edge densities to the subsetted Amazon
review graph of 2000 users and 2000 products, with a density of
0.0006. We compare FRAUDAR to SPOKEN in their F measure
(= 2×precision×recall

precision+recall ) in detecting the fake users. In the first set of
experiments, we assume that no honest user added an edge to the
fraudulent target (i.e. object) nodes.

As seen in Figure 1(b), the results demonstrate that FRAUDAR
works robustly and efficiently against all four attacks, achieving F-

www.andrew.cmu.edu/user/bhooi/camo.zip
www.andrew.cmu.edu/user/bhooi/camo.zip


Figure 4: (a) FRAUDAR outperforms competitors in multiple settings. Accuracy of fraud detection on Amazon data in the experiment
with “reverse camouflage” (edges from honest users to fraudulent products). (b) FRAUDAR has similar and high accuracy both in
detecting fraudulent users and fraudulent customers. Comparison of accuracy on fake users and targets under four different camouflage
attacks.

measures of over 0.95 on all four scenarios for densities of at least
0.04. On the other hand, SPOKEN was able to reach its maximum
performance of 0.9 only when fraud blocks had densities of higher
than 0.06 and under the ‘no camouflage’ scenario.

The experimental results in Figure 1(b) were based on the as-
sumption that no honest user added an edge to the fraudulent target
nodes. However, in a real-world environment, some honest users
may add edges to the fraudulent target nodes (which we refer to
as “reverse camouflage”). To incorporate this, we conducted an-
other experiment using an attack model where we add edges be-
tween honest users and the fraudulent target nodes, but with sparser
density compared to the fraud blocks. We added random edges to
this region, with half the density of the fraud blocks. All other ex-
perimental settings were unchanged. The experimental results are
shown in Figure 4 (a). For FRAUDAR, the results are generally
similar. In contrast, SPOKEN shows slightly worse performance
under this additional camouflage.

To show that FRAUDAR is effective both at catching fraudu-
lent users accounts as well as fraudulent objects, we next separately
evaluate the fraud detection of both fake users and fake targets us-
ing F measure. The basic experimental setup is same as before,
with the density of the fraudulent blocks now fixed to 0.03. In
Figure 4 (b), the bar plots are shown for the comparison. ‘User-
wise’ (red) denotes the F measure of the detecting fake users, and
‘target-wise’ denotes the F measure of detecting fake target nodes.
We see that in general, accuracy is high and fairly similar, but the
performance in detecting fake users is slightly higher than that of
detecting products.

5.3 Q3. Effectiveness on Real Data
In this section, we verify that FRAUDAR accurately detects a

large block of fraudulent accounts in the Twitter follower-followee
graph, as verified by hand labelling and by clear signs of fraud ex-
hibited by a majority of the detected users. Indeed, a majority of the
detected accounts had tweets advertising follower-buying services,
and the tweets had not been removed or the accounts suspended
for the 7 years since the data was collected. Figure 1(d) shows a
sample fraudster caught by FRAUDAR.

The Twitter graph we use contains 41.7 million users and 1.47
billion follows; it was extracted in July 2009 and first used in [16].
On this graph, FRAUDAR detected a dense subgraph of size 4031
followers by 4313 followees. This subgraph is extremely dense,
with 68% density, which is highly suspicious in itself.

To further investigate this block, we randomly sampled 125 fol-
lowers and 125 followees in the block detected by FRAUDAR for
hand labeling to determine how many of them appear fraudulent.
To do this, we labeled which users were fraudulent based on the
following characteristics of their profile data, chosen based on es-
tablished criteria in the literature [25] summarized below.
• links on profile associated with malware or scams
• clear bot-like behavior (e.g. replying to large numbers of

tweets with identical messages)
• account deleted
• account suspended

For comparison, we also construct two control groups of size
100 containing users that were not detected by the algorithm. The
first control group contains randomly selected non-detected users.
For the second (degree-matched) control group, we constructed it
to match the follower count of users in the detected group; we do
this by repeatedly selecting a random detected user, then finding
another non-detected user who has at most 10% bigger or smaller
follower count. During the labelling process, we shuffled the de-
tected users with the control groups randomly and hid group mem-
berships from labellers, labeling users in a “blind” manner.

Additionally, we also check and report how many of these users
have Tweets containing the URLs of two known follower-buying
services, TweepMe and TweeterGetter, showing that they had ad-
vertised these follower-buying services through tweets.

Note that this entire labelling process used only profile and tweet
data and not follower-followee data, whereas our algorithm uses
only follower-followee data, so the labelling is a fair estimate of
the algorithm’s accuracy. We present two pieces of evidence which
strongly indicates fraud in the detected group. Firstly, the percent-
age of users with tweets advertising TweepMe or Tweetergetter is
much higher among the detected users than among both control
groups (Figure 5): 41% of the detected followers, and 26% for the
detected followees. These rise to 62% and 42% respectively as
shown in Figure 1(c) if we ignore deleted, protected and suspended
accounts (for which profile information was unavailable). In the
control groups, there were no mentions of TweepMe and very few
mentions of TweeterGetter, as shown in Figure 5. Figure 5 shows
the breakdown of our groups in terms of deleted and suspended
users. Given the sparsity of TweepMe and TweeterGetter in the
control groups, we see that the detected users are likely charac-



Figure 5: FRAUDAR detects a large, clearly fraudulent block
in Twitter. A majority of the detected accounts were either
deleted, suspended, or contained known follower-buying services,
TweepMe and TweeterGetter. In comparison, the control groups
had much less detected fraud.

Figure 6: Follower-buying services: a large fraction of detected
accounts use TweepMe (bottom) or TweeterGetter (middle, top).

terized by a large block of users using these and possibly other
follower-buying services, resulting in a dense block.

Secondly, we used our hand-labelling using the above criteria to
determine how many of each group appear fraudulent. 57% of the
detected followers and 40% of the followees were labelled as fraud-
ulent, deleted or suspended accounts, but much fewer in the control
groups, with 25% for the degree-matched control group, and 12%
for control group with no condition. Thus both these results sup-
port the effectiveness of FRAUDAR in detecting fraudulent users
in the real-world graphs.

5.4 Q4. Scalability
Figure 7 shows the near-linear scaling of FRAUDAR’s running

time in the number of edges. Here we used the Trip Advisor dataset,
and subsampled user nodes in proportions of 0.70, . . . , 0.712. Slopes
parallel to the main diagonal indicate linear growth.

6. CONCLUSION
In this paper, we propose FRAUDAR, a fraud detection algo-

rithm which provably bounds the amount of fraud adversaries can
have, even in face of camouflage. Our main contributions are as
follows.
• Metric: we propose a novel family of metrics which satis-

Figure 7: FRAUDAR runs in near-linear time: the curve (blue)
shows the running time of FRAUDAR, compared to a linear func-
tion (black).

fies intuitive “axioms” and has several advantages as a suspi-
ciousness metric.
• Theoretical Guarantees: we provide theorems (See Theo-

rem 2 in Section 4.3 and Theorem 4 in Section 4.5) on how
FRAUDAR gives a provable upper bound on undetectable
fraud. We also prove that our proposed metric is camouflage-
resistant.
• Effectiveness: FRAUDAR was successfully applied on real-

world graphs on fraud attacks with various types of cam-
ouflage, and outperformed the competitor. It also detected
a large block of fraudulent activity in the Twitter follower-
followee graph.
• Scalability: FRAUDAR runs near-linearly in the input size.

(See Figure 7).
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. Axiom 1 (Node Suspiciousness)

g(S) =
fV(S) + fE(S)

|S|

>
fV(S ′) + fE(S ′)

|S| =
fV(S ′) + fE(S ′)

|S ′| = g(S ′).

Axiom 2 (Edge Suspiciousness) Let e = (u, v).

g(S(V, E ∪ {e})) =
fV(S) + fE(S) + cuv

|S|

>
fV(S) + fE(S)

|S| = g(S(V, E)).

Axiom 3 (Size) Let S = A ∪ B, and ρ be the edge density.

g(S) =
fV(S) + fE(S)

|S| = a+ b

(
ρ|A||B|
|A|+ |B|

)
= a+ bρ

(
1

|A| +
1

|B|

)−1

which is increasing in both |A| and |B|.
Axiom 4 (Concentration)

g(S) =
f(S)

|S| >
f(S)

|S ′| =
f(S ′)
|S ′| = g(S ′).
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