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ABSTRACT
Learning which Point-of-Interest (POI) a user will visit next is a
challenging task for personalized recommender systems due to
the large search space of possible POIs in the region. A recurring
problem among existing works that makes it difficult to learn and
perform well is the sparsity of the User-POI matrix. In this paper,
we propose our Hierarchical Multi-Task Graph Recurrent Network
(HMT-GRN) approach, which alleviates the data sparsity problem
by learning different User-Region matrices of lower sparsities in a
multi-task setting. We then perform a Hierarchical Beam Search
(HBS) on the different region and POI distributions to hierarchically
reduce the search space with increasing spatial granularity and
predict the next POI. Our HBS provides efficiency gains by reducing
the search space, resulting in speedups of 5 to 7 times over an
exhaustive approach. In addition, we also propose a novel selectivity
layer to predict if the next POI has been visited before by the user
to balance between personalization and exploration. Experimental
results on two real-world Location-Based Social Network (LBSN)
datasets show that our model significantly outperforms baseline
and the state-of-the-art methods.
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(a) Decreasing sparsity levels as region size increases: Comparison
of the User-POI and User-G@𝑃 matrices where 𝑃 ∈ {2, 3, 4, 5, 6}. As 𝑃
increases, the region or cell size decreases.
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(b) Increasing predictive accuracy as sparsity levels decreases: Com-
parison of classification accuracy of the next POI and G@𝑃 region
tasks with a LSTM baseline of the same experimental setup.

Figure 1: Incorporating different region sizes alleviates the
data sparsity problem for next POI recommendation.

1 INTRODUCTION
Recent years have seen rapid growth of sequential check-in data in
social networks, where users share their checked-in locations or
Point-of-Interests (POIs). Personalized web recommender systems
learn from these historical check-in sequences to recommend the
next POIs to visit for a user, in order to improve user experience
on their platforms.

Existing works have studied the next POI recommendation task
primarily on Location-Based Social Networks (LBSN), with simple
baseline methods which make use of POI visit frequencies, followed
by traditional methods of Matrix Factorization (MF) and Markov
Chains (MC). To better model the sequential dependencies or succes-
sive transitions of user POI sequences, Recurrent Neural Networks
(RNN), and its variants of Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) have been extended by several works,
such as the ability to leverage spatio-temporal intervals between ad-
jacent POIs [20, 33, 60], the inclusion of textual information of user
activities [52], and the learning of long and short term user prefer-
ences [11, 19, 42, 46–48]. More recently, attention-based methods
[18, 30, 37, 44, 59] have been proposed to instead learn from both
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successive and non-successive POI transitions of user sequences,
such as via the representation of POIs into graphs for a global view
[8, 25, 32], or by the aggregation of past hidden states with spatio-
temporal weights [50]. However, a recurring underlying problem
among these existing works is the high sparsity of the User-POI
matrix that makes it difficult to learn and accurately predict the
next POI a user would visit in the future. This sparsity problem is
prominent as users would typically only visit a few preferred POIs,
out of all POIs in the dataset as the search space.

In this paper, we propose a Hierarchical Multi-Task Graph Recur-
rent Network (HMT-GRN) to learn the User-POI matrix, but also
learning several User-Regionmatrices of different levels of granular-
ity to better learn the sparse User-POI relationships. Shown in Fig.
1(a), we apply the publicly available geocoding system Geohash1
(G@𝑃 ) on the popular LBSN datasets of Gowalla [5] and Foursquare
[51]. Given each POI’s location coordinates, G@𝑃 maps it to the
respective grid cell, among all equally sized grid cells, and the pre-
cision or 𝑃 determines the fixed cells’ size, which decreases as 𝑃
gets larger, where 𝑃 ∈ {2, 3, 4, 5, 6}. We can observe in Fig. 1(a) that
for both datasets, the sparsity level (i.e. percentage of zeroes in
the matrix) decreases from User-POI (99.99% for both datasets) to-
wards User-G@2, where G@2 uses the largest grid cell size. Further,
in Fig. 1(b), given the same experimental setup with a traditional
LSTM baseline, as commonly used in recent works for evaluation
[20, 32, 42, 50, 60], we see that predicting the next regions or G@𝑃
(i.e. the region where the next POI resides in), always have better
accuracy than predicting the sparse next POI directly, as done in ex-
isting works. However, although the significant performance gains
of the next region-based tasks over the next POI task is evident, it is
not clear how these different next region task distributions, when
learned, could be utilized to predict the next POI more accurately,
which is our main task of interest.

With this motivation, we propose our novel HMT-GRN model
to learn both User-POI and User-G@𝑃 matrices in the form of
multi-task learning, to predict the next POI and G@𝑃 regions, then
perform our Hierarchical Beam Search (HBS) on the learned task
distributions to reduce the search space hierarchically and improve
efficiency to predict the next POI. To balance between personaliza-
tion and exploration, we also propose a selectivity layer that predicts
if the next POI is a historically visited POI, or an unvisited POI by
the user, thereby performing personalization and exploration re-
spectively. Lastly, we propose the Graph Recurrent Network (GRN)
module to learn both sequential dependencies within POI visit se-
quences, and global spatio-temporal POI-POI relationships simulta-
neously with spatial and temporal graphs that considers POI-Region
and POI-Timeslot relationships to alleviate sparsity.

To summarize, the following are the contributions of this paper:
• We propose a novel HMT-GRN2 model to alleviate the data spar-
sity problem by learning both User-POI and different User-Region
matrices for the next POI recommendation task.

• Our HMT-GRN model includes the multi-task learning of next
POI and next regions or G@𝑃 , HBS as a search space reduction
method, as well as a selectivity layer to balance between person-
alization and exploration. Further, our GRN module learns both

1http://geohash.org/, where G@𝑃= 2 (1,251km × 625km), G@𝑃= 3 (156km × 156km),
G@𝑃= 4 (39km × 19.5km), G@𝑃= 5 (4.9km × 4.9km), G@𝑃= 6 (1.2km × 0.61km).
2https://github.com/poi-rec/HMT-GRN

sequential dependencies and global spatio-temporal POI-POI re-
lationships simultaneously.

• Experiments conducted on two popular real-world LBSN datasets
show that our approach outperforms baseline and state-of-the-art
methods significantly, as well as efficiency gains, with speedups
of 5 to 7 times over an exhaustive approach for our HBS.

2 RELATEDWORK
Next POI Recommendation Task. In this recommendation task,

the objective is to predict a ranked set of POIs for each user, where
the next POI visited is highly ranked. By extending FPMC [38],
FPMC-LR [4] was proposed to learn a personalized MC for each
user. PRME-G [12] models both POIs and users in a sequential
transition space and a user preference space respectively. NEXT
[58] incorporates multiple context factors of temporal, geographical
influence, sequential relations and auxiliary meta-data under a
unified framework.

Recently, RNN-based approaches have been shown to be effec-
tive in modelling sequential dependencies for this recommendation
task. ST-RNN [33] introduced the use of spatio-temporal intervals
between adjacent POIs in a RNN, applying linear interpolation
and learning time and distance transition matrices to mitigate the
continuous nature of the intervals. This usage of intervals has
also been applied in LSTMs [20, 60] through new gating mecha-
nisms. Approaches which study the use of additional information
of POI categories [16, 22, 26, 29, 34, 47, 48] and textual information
[1, 23, 24, 52] have also been proposed, however, such categorical
and textual information are not always available among real-world
LBSN datasets [57] (e.g. Gowalla [5]). DeepMove [11] learns sequen-
tial transitions with a GRU, as well as applying a historical attention
module. LSTPM [42] uses several LSTM-based encoders to learn
long and short term user preferences with a context-aware nonlo-
cal network architecture. [37] proposed STAN, a spatio-temporal
bi-attention model that focuses on learning regularities of non-
contiguous visits and non-adjacent POIs. STP-UDGAT [32] pro-
posed the use of Graph Attention Networks (GAT) [43] to learn
global POI-POI relationships from various graphs to model spatial,
temporal and preference factors. Flashback [50] utilizes spatio-
temporal intervals among the current and historical visits to com-
pute weights, with the goal of identifying past RNN hidden states of
similar contexts, then aggregating them to be used for prediction.

Overall, these existing works mainly focus on learning only the
User-POI matrix for prediction, which entails a prominent sparsity
problem and deters effective learning. Therefore, we propose our
HMT-GRN model to alleviate this sparsity problem. Among the
existingworks which also seek to alleviate data sparsity [3, 7, 11, 39–
41, 59], these includes a weighted loss function to accelerate learn-
ing with more informative samples [30], the leverage of additional
information of POI categories [2, 9, 15, 28, 35, 53–57, 61], and the
modeling of spatio-temporal relations in LSTM’s existing multi-
plicative gates [20]. These existing works, along with the other
multi-task [14, 45, 49, 62] inspired approaches, can all be observed
to differ from our HMT-GRN model significantly, such as the novel
adoption of multi-task learning for the next POI and region tasks
with different spatial granularity, our HBS to traverse the learned
task distributions efficiently and spatially reduce the search space,
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a new selectivity layer to balance between personalization and
exploration, and others.

3 PRELIMINARIES
Problem Formulation. Let 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑄 } be a set of 𝑄 POIs

and 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑀 } be a set of 𝑀 users. 𝑆 is the set of visit
sequences for all users where 𝑆 = {𝑠𝑢1 , 𝑠𝑢2 , ..., 𝑠𝑢𝑀 }. Each user’s se-
quence 𝑠𝑢𝑚 consist of sequential POI visits 𝑠𝑢𝑚 = {(𝑙𝑡1 , 𝑙𝑜𝑐𝑡1 , 𝑡𝑖𝑚𝑒𝑡1 ),
(𝑙𝑡2 , 𝑙𝑜𝑐𝑡2 , 𝑡𝑖𝑚𝑒𝑡2 ), ..., (𝑙𝑡𝑖 , 𝑙𝑜𝑐𝑡𝑖 , 𝑡𝑖𝑚𝑒𝑡𝑖 )}, where 𝑙𝑡𝑖 is the POI visited
on time step 𝑡𝑖 , with its corresponding location coordinates 𝑙𝑜𝑐𝑡𝑖 ,
and 𝑡𝑖𝑚𝑒𝑡𝑖 as the timestamp of the visit made. As each user’s se-
quence 𝑠𝑢𝑚 is partitioned into training and testing to predict future
next POIs, we denote the superscript 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡 respectively
(e.g. 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

and 𝑠𝑡𝑒𝑠𝑡𝑢𝑚
).

Problem 1 (Next POI Recommendation). Given user 𝑢𝑚 , 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚
=

{(𝑙𝑡1 , 𝑙𝑜𝑐𝑡1 , 𝑡𝑖𝑚𝑒𝑡1 ), (𝑙𝑡2 , 𝑙𝑜𝑐𝑡2 , 𝑡𝑖𝑚𝑒𝑡2 ), ..., (𝑙𝑡𝑖−1 , 𝑙𝑜𝑐𝑡𝑖−1 , 𝑡𝑖𝑚𝑒𝑡𝑖−1 )} from
the sequential time steps of 𝑡1 to 𝑡𝑖−1 as her historical POI visit se-
quence, the next POI recommendation task is to consider a search
space of POIs from 𝐿 to compute a next POI ranked set 𝑦𝑡𝑖 for the
time step 𝑡𝑖 , where the next POI visited 𝑙𝑡𝑖 , should be highly ranked
within 𝑦𝑡𝑖 .

3.1 LSTM
The LSTM [17] is a variant of RNN [10], capable of learning long
term sequential dependencies across a sequence by using gating
mechanisms to control information flow to the cell state, and has
been found to be effective in various sequential learning applica-
tions. For each time step 𝑡𝑖 , the LSTM is defined as:

𝑖𝑡𝑖 = 𝜎 (W𝑖 𝑥𝑡𝑖 + U𝑖 ℎ𝑡𝑖−1 + b𝑖 ) (1)
𝑓𝑡𝑖 = 𝜎 (W𝑓 𝑥𝑡𝑖 + U𝑓 ℎ𝑡𝑖−1 + b𝑓 ) (2)
𝑜𝑡𝑖 = 𝜎 (W𝑜 𝑥𝑡𝑖 + U𝑜 ℎ𝑡𝑖−1 + b𝑜 ) (3)
𝑐𝑡𝑖 = 𝑡𝑎𝑛ℎ(W𝑐 𝑥𝑡𝑖 + U𝑐 ℎ𝑡𝑖−1 + b𝑐 ) (4)

𝑐𝑡𝑖 = 𝑓𝑡𝑖 ⊙ 𝑐𝑡𝑖−1 + 𝑖𝑡𝑖 ⊙ 𝑐𝑡𝑖 (5)
®ℎ𝑡𝑖 = 𝑜𝑡𝑖 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡𝑖 ) (6)

where 𝑖𝑡𝑖 , 𝑓𝑡𝑖 , 𝑜𝑡𝑖 ∈ Rℎ𝑑𝑖𝑚 are the input, forget and output gates
respectively of ℎ𝑑𝑖𝑚 dimension in the scale of 0 to 1 from the
sigmoid activation function. The input gate seeks to learn “how
much to input” based on the Hadamard product ⊙ with the cell
input 𝑐𝑡𝑖 ∈ Rℎ𝑑𝑖𝑚 . The forget gate determines the information to
be “forgotten” from the previous cell state 𝑐𝑡𝑖−1 ∈ Rℎ𝑑𝑖𝑚 , and the
output gate learns “how much to extract” from the current cell state
𝑐𝑡𝑖 to compute the output hidden representation ®ℎ𝑡𝑖 ∈ Rℎ𝑑𝑖𝑚 .

4 APPROACH
In this section, we first propose our Hierarchical Multi-Task Recur-
rent Network (HMT-RN) to learn the different next POI and region
or G@𝑃 distributions in a multi-task setting, then performing HBS
on the distributions to reduce search space hierarchically, and intro-
duce the selectivity layer. Further, we propose the GRN module to
replace the LSTM module, to model both sequential dependencies
and global spatio-temporal POI-POI relationships simultaneously.

4.1 HMT-RN
Learning next POI and region distributions. As shown in Fig.

1, our motivation is to better perform the next POI recommendation
task by learning not just the sparse User-POI matrix, but also the
User-G@𝑃 matrices which have lower data sparsities. To this end,
we propose to not just predict the next POI, but also the next regions
or G@𝑃 where the next POI resides in, denoting 𝑃 ∈ {2, 3, 4, 5, 6}
as all the precision levels to be considered in our model and 𝑇𝐾 =

{𝐺@2,𝐺@3,𝐺@4,𝐺@5,𝐺@6, 𝑃𝑂𝐼 } as all the tasks to be learned.
First, at time step 𝑡𝑖 , given current user𝑢𝑚 , the previous POI 𝑙𝑡𝑖−1 and
its mapped G@𝑃 grid cell 𝑙 𝐺@𝑃

𝑡𝑖−1
, we use a multi-modal embedding

layer 𝐸𝑊 to map to their trainable vector representations:

®𝑢𝑚, ®𝑙𝑡𝑖−1 , ®𝑙
𝐺@𝑃
𝑡𝑖−1

= 𝐸W (𝑢𝑚, 𝑙𝑡𝑖−1 , 𝑙
𝐺@𝑃
𝑡𝑖−1

); (7)

W ∈ {W𝑢 ,W𝑙 ,W𝐺@2,W𝐺@3,W𝐺@4,W𝐺@5,W𝐺@6}

where W𝑢 ∈ R |𝑈 |×𝛿 ,W𝑙 ∈ R |𝐿 |×𝛿 ,W𝐺@𝑃 ∈ R |𝐿𝐺@𝑃 |×𝛿 are the
user, POI andG@𝑃 weightmatrices respectively for 𝑃 ∈ {2, 3, 4, 5, 6},
|𝐿𝐺@𝑃 | as the total number of G@𝑃 grid cells after mapping all
locations in 𝐿, and 𝛿 is the defined embedding dimension. Next, we
use a LSTM layer Φ to learn the sequential dependencies among
the POI sequences, with the previous POI embedding ®𝑙𝑡𝑖−1 as input:

®ℎ𝑡𝑖 = Φ(®𝑙𝑡𝑖−1 ) (8)

𝑡𝑘𝑃𝑂𝐼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝐷𝐿W𝐿1 ( 𝐷𝑂 ( ®ℎ𝑡𝑖 ⊕ ®𝑢𝑚) ) ) (9)

where ®ℎ𝑡𝑖 ∈ Rℎ𝑑𝑖𝑚 is the hidden representation computed from Eq.
(6), 𝐷𝑂 as the dropout layer, ⊕ as the concatenate operation, 𝐷𝐿
as a dense linear layer parameterized withW𝐿1 ∈ Rℎ𝑑𝑖𝑚+𝛿×|𝐿 | to
project to |𝐿 | POIs, then performing the softmax normalization to
compute the conditional probability of the next POI task distribution
𝑡𝑘𝑃𝑂𝐼 = 𝑃 (𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ). Accordingly, the ranked set 𝑦𝑡𝑖 = Ψ(𝑡𝑘𝑃𝑂𝐼 )
can be computed by applying the sorting function Ψ(.) to sort
𝑡𝑘𝑃𝑂𝐼 in descending order for the next POI recommendation task.
As per Eq. (9), we use the user embedding ®𝑢𝑚 as the task specific
embedding for this task to include personalization.

Similarly, in addition to the next POI task, we perform multi-
task learning to also predict the next 𝑙𝐺@𝑃

𝑡𝑖
, where 𝑙𝐺@𝑃

𝑡𝑖
is the

respective G@𝑃 grid cell of the next POI 𝑙𝑡𝑖 . Here, instead of the
user embedding ®𝑢𝑚 , we use the task specific embedding of the
previous POI G@𝑃 representation ®𝑙 𝐺@𝑃

𝑡𝑖−1
from Eq. (7), to predict the

next corresponding 𝑙𝐺@𝑃
𝑡𝑖

, thereby computing the task distribution
𝑡𝑘𝐺@𝑃 = 𝑃 (𝑙𝐺@𝑃

𝑡𝑖
| 𝑙𝑡𝑖−1 ):

𝑡𝑘𝐺@𝑃 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝐷𝐿W𝐿@𝑃
( 𝐷𝑂 ( ®ℎ𝑡𝑖 ⊕ ®𝑙 𝐺@𝑃

𝑡𝑖−1
) ) ); (10)

𝑃 ∈ {2, 3, 4, 5, 6}
Intuitively, this can be interpreted as using the previous region to

help predict the next region of the same 𝑃 or grid cell size for each
of the next G@𝑃 tasks. For all tasks 𝑇𝐾 , we use ®ℎ𝑡𝑖 as the common
representation for shared feature learning, as per Eq. (9) and (10).

Training. With each task 𝑡𝑘 ∈ {𝐺@2,𝐺@3, ...,𝐺@6, 𝑃𝑂𝐼 }, the
cross entropy loss is L𝑡𝑘 = −∑𝑁𝑡𝑟𝑎𝑖𝑛

𝑣=1 log(𝑝𝑏𝑣), where 𝑝𝑏𝑣 is the
predicted probability of the ground truth next POI or G@𝑃 , de-
pending on the task 𝑡𝑘 , for the 𝑣-th training sample, and 𝑁𝑡𝑟𝑎𝑖𝑛 is
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the total number of training samples. The overall supervised loss
L = 1

|𝑇𝐾 |
∑L𝑡𝑘 is computed with equal weights to not bias to any

task.

Hierarchical Beam Search. Instead of using the sparse next
POI task distribution 𝑡𝑘𝑃𝑂𝐼 = 𝑃 (𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ) alone for prediction,
we propose to leverage the learned next POI and G@𝑃 task distri-
butions {𝑡𝑘𝐺@2

1 , 𝑡𝑘
𝐺@3
2 , ..., 𝑡𝑘

𝐺@6
𝑖−1 , 𝑡𝑘𝑃𝑂𝐼

𝑖
}, by computing the joint

probability3 of all tasks 𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ) to rank the
search space of POIs from 𝐿, and predict the next POI. First, we
propose a Hierarchical Spatial Graph 𝐺ℎ𝑠 :

Definition 4.1 (Hierarchical Spatial Graph). A directed graph de-
noted as𝐺ℎ𝑠 = (𝑉ℎ𝑠 , 𝐸ℎ𝑠 ) where𝑉ℎ𝑠 and 𝐸ℎ𝑠 are the sets of all tasks’
vertices and edges respectively. 𝐺ℎ𝑠 represents the multiple task
distribution as a graph with a spatial hierarchy, in the increasing
granularity order of {𝑡𝑘𝐺@2

1 , 𝑡𝑘
𝐺@3
2 , ..., 𝑡𝑘

𝐺@6
𝑖−1 , 𝑡𝑘𝑃𝑂𝐼

𝑖
}, where each

vertex of G@2 is connected to the G@3 vertices within it, and simi-
larly, each vertex of G@3 is connected to the G@4 vertices within it,
and so on, until the last POI layer, in a hierarchical structure. Each
task vertex 𝑣ℎ𝑠 ∈ 𝑉ℎ𝑠 is weighted with the probability score from
its respective task distribution, which will be used in the search
algorithms.

By representing the task distributions as a hierarchical spa-
tial graph, we can perform an exhaustive search, or equivalently,
Breadth-first search (BFS), to compute the sums of log-probabilities
for 𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ) by traversing all paths of the
graph 𝐺ℎ𝑠 to rank all POIs in 𝐿, however, this would be highly
inefficient. We instead propose a Hierarchical Beam Search (HBS)
method to only expand the top-𝛽 promising vertices of each task
distribution during traversals, where 𝛽 is the beam width. Specif-
ically, given each sequential pair of task distributions (𝑡𝑘𝑖−1, 𝑡𝑘𝑖 )
from {𝑡𝑘𝐺@2

1 , 𝑡𝑘
𝐺@3
2 , ..., 𝑡𝑘

𝐺@6
𝑖−1 , 𝑡𝑘𝑃𝑂𝐼

𝑖
} (e.g. (𝑡𝑘𝐺@2

1 , 𝑡𝑘
𝐺@3
2 ) and

(𝑡𝑘𝐺@3
2 , 𝑡𝑘

𝐺@4
3 )), we compute:

𝑡𝑘
𝛽

𝑖
= 𝑓

( {
log(𝑡𝑘𝛽

𝑖−1,𝑏 ) + log(𝑡𝑘𝑖, 𝑗 ) | 𝑡𝑘𝑖, 𝑗 ∈ N (𝑡𝑘𝛽
𝑖−1,𝑏 ),

𝑏 ∈ {1, 2, ..., 𝛽}
} ) (11)

where 𝑡𝑘𝛽
𝑖−1 and 𝑡𝑘

𝛽

𝑖
are the top-𝛽 partial solutions for the input

task distributions of 𝑡𝑘𝑖−1 and 𝑡𝑘𝑖 respectively, and a partial so-
lution is the sum of log-probabilities of all vertices traversed in
its path. For each top beam 𝑏 ∈ {1, 2, ..., 𝛽} of the previous input
task distribution 𝑡𝑘𝛽

𝑖−1,𝑏 , we identify its (directed) neighbourhood

𝑡𝑘𝑖, 𝑗 ∈ N (𝑡𝑘𝛽
𝑖−1,𝑏 ) from the next input task distribution 𝑡𝑘𝑖 , and

compute the sum of log-probabilities with each of its hierarchically
connected 𝑗 vertices (i.e. log(𝑡𝑘𝛽

𝑖−1,𝑏 ) + log(𝑡𝑘𝑖, 𝑗 )). After computing
all the partial solutions for the current iteration, we use the function
𝑓 (.) to only consider the top-𝛽 partial solutions to compute 𝑡𝑘𝛽

𝑖
,

which retains the summed log-probabilities of its traversed vertices,
and will be used for the next iteration. We illustrate an example
of HBS with 𝛽 = 2 in Fig. 2, performed for only the input pair of
(𝑡𝑘𝐺@2

1 , 𝑡𝑘
𝐺@3
2 ) task distributions. Effectively, after performing the

3While the events predicted are not independent, we use the multi-task learning
framework to alleviate the sparsity issue effectively by modelling the distributions
independently.

Figure 2: Hierarchical Beam Search performed with top-
𝛽 = 2 (red boxes) for the sequential pair of input tasks
(𝑡𝑘𝑖−1 = 𝑡𝑘

𝐺@2
1 , 𝑡𝑘𝑖 = 𝑡𝑘

𝐺@3
2 ). Each vertex is weighted with

its respective task probability score (top right of each vertex),
for the computation of partial solutions, then ranking them
to output 𝑡𝑘𝛽

𝑖
. Maps © OpenStreetMap contributors, CC BY-

SA.

HBS on all task distributions from the graph 𝐺ℎ𝑠 , we can reduce
the search space significantly to reduce noise. Specifically, with
the input pair of (𝑡𝑘𝐺@6

𝑖−1 , 𝑡𝑘𝑃𝑂𝐼
𝑖

) for the last iteration, the search
space is reduced to only consider the POIs within the top-𝛽 of the
𝑡𝑘
𝐺@6
𝑖−1 regions or cells, instead of all |𝐿 | POIs, as well as computing

their respective joint probability 𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 )
to derive the ranked set.

Selectivity Layer. To balance between personalization and ex-
ploration, we propose a novel selectivity layer by predicting if the
next POI has been visited before by the user, which would inform
the model to personalize or explore. To predict if the next POI is a
visited (𝑙𝑡𝑖 ∈ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

) or unvisited (𝑙𝑡𝑖 ∉ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚
) POI by the user as

a binary classification task, and to reduce additional parameters,
we simply retrieve the next predicted POI 𝑙𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑡𝑖 (𝑡𝑘

𝑃𝑂𝐼 )
from the next POI task distribution 𝑡𝑘𝑃𝑂𝐼 in Eq. (9) and compute:

𝑦𝑡𝑖 =

{
Ψ
(
𝑃 (𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 )

)
𝑙𝑡𝑖 ∈ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

Ψ
(
𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 )

)
otherwise

(12)

where 𝑦𝑡𝑖 is the computed next POI ranked set and Ψ(.) sorts a
given distribution to rank POIs from their probability scores in
descending order. If the predicted next POI has been visited be-
fore by the user (𝑙𝑡𝑖 ∈ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

), the selectivity layer personalizes by
using the next POI task distribution 𝑡𝑘𝑃𝑂𝐼 = 𝑃 (𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ) to com-
pute the ranked set, as it includes the use of user embedding to
better capture user preferences from 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

, as per Eq. (9). Other-
wise, it explores by performing the HBS to rank POIs based on a

4



Figure 3: Illustration of the HMT-GRN model that includes shared feature learning by our GRN module, followed by the
multi-task learning of next regions and POI, then performing our HBS and selectivity layer. An example of top-𝛽 = 2 (red boxes)
is used by HBS to traverse the multi-task distributions and reduce search space. Maps © OpenStreetMap contributors, CC BY-SA.

regional context, using the joint probability of the multiple tasks
𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 ).

4.2 Graph Recurrent Network (GRN)
Next, we propose the GRN module to replace the LSTM in our
HMT-RN model, to allow the additional learning of global POI-POI
relationships. Among the existing works, recurrent models (e.g.
LSTM) have been shown to be effective in learning sequential de-
pendencies of each user’s POI sequence, however, as highlighted in
[32], it does not learn global POI-POI relationships directly as com-
pared to graph neural networks (e.g. GAT). Similarly, a drawback
of GAT [43], used in [32] can also be observed from being unable to
learn the sequential dependencies in a sequence, unlike recurrent
models. Therefore, a natural consideration is if both factors can
be modelled by a single model, specifically, a GRN to learn both
(a) sequential dependencies and (b) global POI-POI relationships.
To this end, we propose a novel GRN module for the next POI
recommendation task by extending the Dimensional GAT (DGAT)
variant in [32] with the addition of (a) a recurrent structure and (b)
the alleviation of data sparsity by using regions and time slots to
connect POIs in the spatial and temporal graphs. First, the DGAT
variant in [32] is defined as:

®𝛼𝑙𝑡𝑖−1 , 𝑗 =
𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
a [W𝑝

®𝑙𝑡𝑖−1 ⊕ W𝑝 ®𝑗]
))

∑
®𝑘∈�̂�𝐺 [𝑙𝑡𝑖−1 ]

𝑒𝑥𝑝

(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
a [W𝑝

®𝑙𝑡𝑖−1 ⊕ W𝑝
®𝑘]
))
(13)

𝑝𝑡𝑖 =
∑︁

®𝑗 ∈�̂�𝐺 [𝑙𝑡𝑖−1 ]
®𝛼𝑙𝑡𝑖−1 , 𝑗 ⊙ W𝑝 ®𝑗 (14)

whereW𝑝 ∈ R𝛿×ℎ𝑑𝑖𝑚 is an input projection, and a is a linear layer
parameterized with W𝑎 ∈ R2·ℎ𝑑𝑖𝑚×ℎ𝑑𝑖𝑚 to predict the attention
weights ®𝛼𝑙𝑡𝑖−1 , 𝑗 ∈ R

ℎ𝑑𝑖𝑚 between the previous POI input 𝑙𝑡𝑖−1 and
each POI of its closed neighbourhood (i.e. adjacent neighbours and
itself) ®𝑗 ∈ �̂�𝐺 [𝑙𝑡𝑖−1 ] from a POI-POI graph 𝐺 , and ®𝑙𝑡𝑖−1 , ®𝑗 ∈ R𝛿 are
POI embeddings from Eq. (7). The predicted weights ®𝛼𝑙𝑡𝑖−1 , 𝑗 are
then applied in Eq. (14) to compute a weighted sum of its respective
neighbours, outputting the hidden representation 𝑝𝑡𝑖 ∈ Rℎ𝑑𝑖𝑚 .

Next, different from [32] that uses sparse POI-POI relationships
to connect POIs in their spatial and temporal POI-POI graphs, we
instead propose to connect POIs based on their POI-Region and
POI-Timeslot relationships respectively, to reduce the impact of
data sparsity. Specifically:

Definition 4.2 (Spatial Graph). An undirected and unweighted
POI-POI graph denoted as 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) where 𝑉𝑠 = 𝐿 and 𝐸𝑠
are the sets of POIs and edges respectively. Each pair of POIs has
adjacency if they are within the same G@4 grid cell.

Definition 4.3 (Temporal Graph). An undirected and unweighted
POI-POI graph denoted as 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) where 𝑉𝑡 = 𝐿𝑡𝑟𝑎𝑖𝑛 and 𝐸𝑠
are the sets of POIs and edges respectively. We first partition each
day to 8 time slots of 3hrs each, with a total of 56 time slots, then
map each visit in 𝑆𝑡𝑟𝑎𝑖𝑛 to its corresponding time slot, where each
POI vertex 𝑣𝑡 will have a set of mapped time slots 𝑣𝑠𝑙𝑜𝑡𝑡 . Each pair
of POIs (e.g. 𝑣𝑡𝑖 and 𝑣𝑡 𝑗 ) has adjacency if their time slot sets have a

Jaccard similarity
|𝑣𝑠𝑙𝑜𝑡𝑡𝑖

⋂
𝑣𝑠𝑙𝑜𝑡𝑡 𝑗

|
|𝑣𝑠𝑙𝑜𝑡𝑡𝑖

⋃
𝑣𝑠𝑙𝑜𝑡𝑡 𝑗

| above 0.9.

To model global POI-POI relationships, here, we abbreviate the
DGAT layer in Eq. (14) to Γ and compute the hidden representations
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of 𝑝𝐺𝑠

𝑡𝑖
and 𝑝𝐺𝑡

𝑡𝑖
from the proposed 𝐺𝑠 and 𝐺𝑡 graphs respectively:

𝑝
𝐺𝑠

𝑡𝑖
= Γ𝑠 (®𝑙𝑡𝑖−1 ) (15)

𝑝
𝐺𝑡

𝑡𝑖
= Γ𝑡 (®𝑙𝑡𝑖−1 ) (16)

Further, to simultaneously learn the sequential dependencies, we
include the computed representations with a recurrent structure
by modifying Eq. (1) to (4) to the below:

𝑖𝑡𝑖 = 𝜎 (W𝑖 𝑥𝑡𝑖 + U𝑖 ℎ𝑡𝑖−1 + b𝑖 + V𝑖 𝑝𝐺𝑠

𝑡𝑖
+ Z𝑖 𝑝𝐺𝑡

𝑡𝑖
) (17)

𝑓𝑡𝑖 = 𝜎 (W𝑓 𝑥𝑡𝑖 + U𝑓 ℎ𝑡𝑖−1 + b𝑓 + V𝑓 𝑝
𝐺𝑠

𝑡𝑖
+ Z𝑓 𝑝

𝐺𝑡

𝑡𝑖
) (18)

𝑜𝑡𝑖 = 𝜎 (W𝑜 𝑥𝑡𝑖 + U𝑜 ℎ𝑡𝑖−1 + b𝑜 + V𝑜 𝑝𝐺𝑠

𝑡𝑖
+ Z𝑜 𝑝𝐺𝑡

𝑡𝑖
) (19)

𝑐𝑡𝑖 = 𝑡𝑎𝑛ℎ(W𝑐 𝑥𝑡𝑖 + U𝑐 ℎ𝑡𝑖−1 + b𝑐 + V𝑐 𝑝𝐺𝑠

𝑡𝑖
+ Z𝑐 𝑝𝐺𝑡

𝑡𝑖
) (20)

where V𝑖 ,V𝑓 ,V𝑜 ,V𝑐 ∈ R𝛿×ℎ𝑑𝑖𝑚 and Z𝑖 ,Z𝑓 ,Z𝑜 ,Z𝑐 ∈ R𝛿×ℎ𝑑𝑖𝑚 are
the weight matrices for 𝑝𝐺𝑠

𝑡𝑖
and 𝑝𝐺𝑡

𝑡𝑖
respectively, for all the gates

and the cell input, to complete our proposed GRN module. Lastly,
we illustrate our final HMT-GRN model in Fig. 3, after replacing
the LSTM module in our HMT-RN model with the GRN module.

5 EXPERIMENTS
5.1 Datasets
We evaluate our HMT-GRN model on two popular LBSN datasets
of Gowalla [5] and Foursquare [51] for the next POI recommenda-
tion task, where they contain worldwide POIs in many countries.
For preprocessing, similar to [32, 60], we consider users with visit
counts between 20 and 50 in the datasets, then removing POIs vis-
ited by less than 10 users, reporting the statistics in Table 1. For
training and testing, we similarly use the first 80% visits and the
last 20% visits of each user’s sequence respectively, after sorting the
timestamps in chronological order. Same as the decreasing sparsity
trend in Fig. 1(a) based on the unprocessed datasets, we can ob-
serve in Table 1, after preprocessing, that the sparsity is the highest
for the User-POI matrix (99.83% and 99.84%), and lowest for the
User-G@2 matrix (97.39% and 98.27%).

5.2 Baseline Methods and Evaluation Metrics
• TOP: We rank the POIs using their global frequencies in 𝑆𝑡𝑟𝑎𝑖𝑛
for popular POIs.U-TOP instead ranks the POIs using each users’
historical sequence 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

based on the users’ visiting frequencies.
• MF [21]: A popular collaborative filtering method for recommen-
dation problems by factorizing the User-POI matrix.

• RNN [10]: A recurrent model that learns sequential dependencies
of POI visit sequences but suffers from the vanishing gradient
problem. The variants of LSTM [17] and GRU [6] uses various
multiplicative gates to control information flow.

• HST-LSTM [20]: A LSTM-based model that leverages spatial
and temporal intervals between sequential POIs into the LSTM
existing gates. Same as [32, 60], we use their ST-LSTM variant
here as the data does not have session information. STGCN [60]
similarly models the intervals with new time and distance gates,
and a new cell state for short term preference learning.

• LSTPM [42]: A LSTM-based model that learns long term user
preferences through a nonlocal network, and short term user
preferences with a geo-dilated network.

Table 1: Statistics of the LBSN datasets (after preprocessing).

Dataset #Country #User #POI #Visits Sparsity

G@2 G@3 G@4 G@5 G@6 POI

Gowalla4 41 11,864 3,359 86,670 97.39% 99.07% 99.45% 99.62% 99.73% 99.83%
Foursquare5 63 16,636 4,455 170,573 98.27% 99.11% 99.39% 99.62% 99.77% 99.84%

• STAN [37]: A bi-attentionmodel that incorporates spatio-temporal
correlations of non-adjacent POIs and non-contiguous visits.

• STP-UDGAT [32]: A GAT-based approach that models spatio-
temporal-preference factors though various POI-POI graphs in
an explore-exploit architecture.

• Flashback [50]: A RNN architecture that leverages spatial and
temporal intervals to compute an aggregated hidden state from
past hidden states for prediction. We use their best performing
RNN variant here for evaluation.

• HMT-RN: Our HMT-RN model, as defined in Section 4.1, that
includes (a) multi-task learning, (b) HBS, and (c) selectivity layer.

• HMT-GRN: Our final variant by replacing the LSTM layer in
the HMT-RN model with a GRN layer.
For both HST-LSTM and STGCN, following [31, 32, 50], given

the previous POI 𝑙𝑡𝑖−1 to predict the next POI 𝑙𝑡𝑖 , we use the spatial
and temporal intervals between 𝑙𝑡𝑖−2 and 𝑙𝑡𝑖−1 instead of 𝑙𝑡𝑖−1 and
𝑙𝑡𝑖 as this would require knowing the next POI visit 𝑙𝑡𝑖 in advance,
which is impractical in a real-world setting [11].

Metrics. Same as [20, 32, 60] and other existing works, we use
the standard metric of Acc@𝐾 = 1

𝑁𝑡𝑒𝑠𝑡
#ℎ𝑖𝑡@𝐾 where #ℎ𝑖𝑡@𝐾 is

the number of samples with the correct predictions made within the
top 𝐾 of the ranked set for 𝐾 ∈ {1, 5, 10, 20}, and 𝑁𝑡𝑒𝑠𝑡 is the total
number of test samples. We also evaluate for the metric of Mean
Reciprocal Rank (MRR) where𝑀𝑅𝑅 = 1

𝑁𝑡𝑒𝑠𝑡
.
∑𝑁𝑡𝑒𝑠𝑡

𝑣=1
1

𝑟𝑎𝑛𝑘𝑣 (𝑙𝑡𝑖 )
, and

𝑟𝑎𝑛𝑘𝑣 (𝑙𝑡𝑖 ) is the position of the ground truth next POI 𝑙𝑡𝑖 in the
predicted ranked set for each 𝑣-th test sample. Effectively, Acc@𝐾
helps to understand the performance of the recommender system
for the top 𝐾 recommendations, whereas MRR gives an overall
performance of the ranked set predicted.

Next New Metrics. Recent works [4, 12, 13, 36] have proposed
methods focused on recommending Next New (𝑁 2) or unvisited
POIs that were not historically visited by the user (i.e. 𝑙𝑡𝑖 ∉ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

).
A limitation of these works is that they only consider POI samples
visited within the next 𝜏 = 6 hours of the previous POI check-in
for both training and testing to learn short term preferences. As
observed in [36], the 𝜏 = 6 hours threshold filters the data to a small
subset (around 20% to 30% for Foursquare and Gowalla) of all real-
world cases, limiting the practicality of the recommender system
where long term preferences are not learned. Thus, to overcome
this limitation, in addition to the Acc@𝐾 and MRR metrics, we use
the 𝑁 2 extensions of 𝑁 2-Acc@𝐾 and 𝑁 2-MRR to only evaluate
next unvisited or new POI recommendations, and without the 𝜏
time constraint so that both short and long term user preferences
can be learned and evaluated for all real-world cases. This set of
𝑁 2 metrics is necessary to ensure that the recommender system
does not always just recommend historically visited POIs correctly,
but also new unvisited POIs which the user will visit in the future,
4https://snap.stanford.edu/data/loc-gowalla.html
5https://sites.google.com/site/yangdingqi/home
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Table 2: Performance in Acc@𝐾 and MRR for all next POI test samples (i.e. visited and unvisited POIs), as well as the corre-
sponding 𝑁 2 metrics of 𝑁 2-Acc@𝐾 and 𝑁 2-MRR for only unvisited next POI test samples.

Gowalla

Acc@1 Acc@5 Acc@10 Acc@20 MRR 𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR

TOP 0.0084 0.0351 0.0678 0.1022 0.0270 0.0068 0.0281 0.0574 0.0874 0.0227
U-TOP 0.1423 0.2767 0.3035 0.3110 0.1986 0 0 0 0 0
MF 0.0644±0.001 0.0785±0.001 0.0825±0.001 0.0879±0.001 0.0736±0.001 0.0015±0.001 0.0032±0.001 0.0046±0.001 0.0073±0.001 0.0040±0.001
RNN 0.0844±0.002 0.1873±0.001 0.2440±0.001 0.3050±0.001 0.1381±0.001 0.0356±0.001 0.1045±0.001 0.1496±0.001 0.2034±0.001 0.0746±0.001
GRU 0.0865±0.001 0.1869±0.001 0.2489±0.001 0.3161±0.001 0.1406±0.001 0.0367±0.001 0.1064±0.001 0.1563±0.001 0.2150±0.001 0.0773±0.001
LSTM 0.0968±0.001 0.1968±0.001 0.2575±0.001 0.3276±0.002 0.1510±0.001 0.0419±0.001 0.1140±0.001 0.1661±0.001 0.2291±0.001 0.0843±0.001
HST-LSTM 0.0087±0.001 0.0366±0.001 0.0636±0.002 0.1004±0.001 0.0279±0.001 0.0069±0.001 0.0293±0.001 0.0545±0.002 0.0854±0.001 0.0233±0.001
STGCN 0.0313±0.001 0.0909±0.003 0.1351±0.005 0.1955±0.004 0.0684±0.001 0.0126±0.001 0.0460±0.002 0.0777±0.003 0.1269±0.003 0.0374±0.001
LSTPM 0.1297±0.001 0.2282±0.001 0.2720±0.001 0.3200±0.002 0.1803±0.001 0.0353±0.001 0.0869±0.002 0.1199±0.002 0.1613±0.003 0.0653±0.001
STAN 0.0939±0.002 0.1928±0.003 0.2440±0.003 0.3039±0.006 0.1460±0.002 0.0143±0.001 0.0513±0.002 0.0843±0.002 0.1323±0.005 0.0398±0.001
STP-UDGAT 0.1194±0.001 0.2374±0.001 0.2783±0.001 0.3202±0.002 0.1770±0.001 0.0251±0.001 0.0712±0.001 0.1014±0.001 0.1393±0.002 0.0517±0.001
Flashback 0.1266±0.001 0.2342±0.001 0.2770±0.002 0.3285±0.001 0.1821±0.001 0.0153±0.001 0.0517±0.002 0.0825±0.003 0.1288±0.001 0.0412±0.001
HMT-RN 0.1434±0.001 0.2677±0.001 0.3213±0.001 0.3781±0.001 0.2053±0.001 0.0523±0.001 0.1334±0.001 0.1888±0.001 0.2536±0.001 0.0987±0.001
HMT-GRN 0.1455±0.001 0.2783±0.001 0.3394±0.001 0.4033±0.001 0.2120±0.001 0.0539±0.001 0.1369±0.001 0.1920±0.001 0.2579±0.001 0.1008±0.001
Relative Improvement 2.2% 0.6% 11.8% 22.8% 6.7% 28.6% 20.1% 15.6% 12.6% 19.6%

Foursquare

Acc@1 Acc@5 Acc@10 Acc@20 MRR 𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR

TOP 0.0082 0.0353 0.0546 0.0869 0.0263 0.0056 0.0247 0.0373 0.0604 0.0192
U-TOP 0.1690 0.3297 0.3796 0.3979 0.2382 0 0 0 0 0
MF 0.0687±0.001 0.0859±0.001 0.0905±0.001 0.0954±0.001 0.0789±0.001 0.0009±0.001 0.0028±0.001 0.0043±0.001 0.0061±0.001 0.0031±0.001
RNN 0.1078±0.001 0.2246±0.001 0.2973±0.002 0.3752±0.001 0.1700±0.001 0.0444±0.001 0.1272±0.001 0.1858±0.001 0.2536±0.001 0.0914±0.001
GRU 0.1103±0.001 0.2300±0.001 0.3027±0.001 0.3852±0.002 0.1740±0.001 0.0459±0.001 0.1306±0.001 0.1908±0.001 0.2644±0.001 0.0945±0.001
LSTM 0.1191±0.001 0.2437±0.001 0.3174±0.001 0.4032±0.002 0.1854±0.001 0.0505±0.001 0.1400±0.001 0.2035±0.001 0.2828±0.001 0.1023±0.001
HST-LSTM 0.0076±0.001 0.0307±0.001 0.0500±0.001 0.0806±0.001 0.0244±0.001 0.0058±0.001 0.0218±0.001 0.0369±0.001 0.0591±0.001 0.0181±0.001
STGCN 0.0276±0.002 0.0948±0.005 0.1531±0.006 0.2323±0.005 0.0703±0.003 0.0114±0.001 0.0497±0.002 0.0896±0.003 0.1503±0.003 0.0400±0.001
LSTPM 0.1478±0.001 0.2671±0.002 0.3214±0.002 0.3778±0.001 0.2078±0.001 0.0426±0.001 0.1052±0.001 0.1466±0.001 0.1951±0.001 0.0782±0.001
STAN 0.1066±0.004 0.2382±0.007 0.3136±0.008 0.3987±0.010 0.1759±0.005 0.0249±0.002 0.0870±0.007 0.1384±0.008 0.2070±0.011 0.0643±0.004
STP-UDGAT 0.1397±0.001 0.2926±0.002 0.3556±0.002 0.4187±0.001 0.2136±0.001 0.0382±0.001 0.1156±0.002 0.1699±0.002 0.2324±0.001 0.0811±0.001
Flashback 0.1442±0.001 0.2768±0.002 0.3347±0.002 0.4012±0.001 0.2118±0.002 0.0229±0.001 0.0742±0.001 0.1185±0.001 0.1820±0.001 0.0577±0.001
HMT-RN 0.1617±0.001 0.3257±0.001 0.3961±0.001 0.4673±0.001 0.2415±0.001 0.0670±0.001 0.1738±0.001 0.2486±0.001 0.3357±0.001 0.1269±0.001
HMT-GRN 0.1673±0.001 0.3357±0.002 0.4148±0.001 0.4983±0.001 0.2510±0.001 0.0686±0.001 0.1756±0.002 0.2507±0.001 0.3386±0.001 0.1288±0.001
Relative Improvement -1.0% 1.8% 9.3% 19.0% 5.4% 35.8% 25.4% 23.2% 19.7% 25.9%

correctly, thereby improving the user experience and supporting
them to explore new places of interest [27, 63].

Concretely, given the total number of test samples 𝑁𝑡𝑒𝑠𝑡 that
contains both visited and unvisited next POIs, used for evaluation
in Acc@𝐾 and MRR, we replace 𝑁𝑡𝑒𝑠𝑡 with 𝑁𝑛𝑒𝑤𝑡𝑒𝑠𝑡 where the test
samples should be new or unvisited 𝑙𝑡𝑖 ∉ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

for the 𝑁 2 metrics.
Additionally, only for the 𝑁 2 metrics, given the predicted ranked
set of 𝑦𝑡𝑖 from each baseline and model, we remove visited POIs
(i.e. 𝑦𝑡𝑖 \ 𝑠𝑡𝑟𝑎𝑖𝑛𝑢𝑚

) to correctly evaluate for the unvisited test samples.
For our HMT-GRN model, we deactivate the selectivity layer in
Eq. (12) for only the 𝑁 2 metrics, and compute the ranked set 𝑦𝑡𝑖 =
Ψ
(
𝑃 (𝐺@2,𝐺@3, ...,𝐺@6, 𝑙𝑡𝑖 | 𝑙𝑡𝑖−1 )

)
via joint probability directly

as 𝑁𝑛𝑒𝑤𝑡𝑒𝑠𝑡 only contains unvisited test samples, removing the need
for the selectivity layer.

5.3 Experimental Settings
We use the Adam optimizer, 20 epochs, a batch size of 32, a learning
rate of 0.0001, 𝛽 = 100 for HBS, and set the dropout rate to be 0.9,
then set the POI, user, geohash embedding dimension 𝛿 and hidden
dimensionℎ𝑑𝑖𝑚 to be the same of 1,024. For fair comparison, for MF,
RNN, GRU, and LSTM, we use the same settings where applicable.
For the other recent works of HST-LSTM, STGCN, LSTPM and
STP-UDGAT, we follow their recommended settings as described.

For Flashback and STAN, as their recommended hyperparameters
does not work as well in our experiments, we perform grid search
and use the best performing models for evaluation.

5.4 Results
We report the evaluation results of our proposed HMT-GRN model
and the baselines in Table 2, where the relative improvement is
computed between our HMT-GRN model and the best baseline.
For all baselines and models, except TOP and U-TOP which are
deterministic, we show the averaged results of 5 runs on different
random seeds, as well as their respective standard deviations:
• Our HMT-GRN outperforms all the baselines significantly on all
metrics for the next POI recommendation task, except for the
Acc@1 metric of the Foursquare dataset by 1%.

• U-TOP and the recent works of Flashback, STP-UDGAT and
LSTPM are the most competitive baselines. U-TOP was able to
perform well as users would tend to visit their own frequently
visited POIs [32]. Further, unlike the other machine learning
baselines, as U-TOP does not rely on learning the sparse User-
POI matrix, it was thus able to perform competitively. However,
as it is only able to rank visited POIs by the user, and not unvisited
POIs, the set of 𝑁 2 metric scores will always be 0, as shown in
Table 2, making it a less practical approach in a real-world setting.
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Table 3: Performance comparison of search methods.

Dataset Search Method 𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR

Gowalla

GS (𝛽 = 1) 0.0408 0.0762 0.0911 0.1122 0.0592
BFS 0.0537 0.1381 0.1913 0.2566 0.1008
HBS (𝛽 = 10) 0.0536 0.1366 0.1857 0.2354 0.0966
HBS (𝛽 = 100) 0.0539 0.1369 0.1920 0.2579 0.1008

Foursquare

GS (𝛽 = 1) 0.0473 0.0745 0.0820 0.0872 0.0613
BFS 0.0672 0.1750 0.2504 0.3385 0.1285
HBS (𝛽 = 10) 0.0671 0.1742 0.2444 0.3017 0.1205
HBS (𝛽 = 100) 0.0686 0.1756 0.2507 0.3386 0.1288

GS (𝛽 = 1) HBS (𝛽 = 10) HBS (𝛽 = 100) BFS
0

5

10

H
ou

r

(a) Gowalla.

GS (𝛽 = 1) HBS (𝛽 = 10) HBS (𝛽 = 100) BFS
0

10

20

H
ou

r

(b) Foursquare.

Figure 4: Efficiency comparison of search methods.

• Different from [32], which focuses on only learning from short se-
quences (i.e. |𝑠𝑢𝑚 |<30), we observe in Table 2 that when learning
from instead longer sequences (i.e. |𝑠𝑢𝑚 |<50) in our experiments,
STP-UDGAT does not always perform well as it is unable to learn
the sequential dependencies of POI transitions, due to the design
of GAT.

• Comparing the LSTM baseline with our LSTM-based HMT-RN
variant, where the former only learns the User-POI matrix and
the latter learns both User-POI and User-G@𝑃 matrices, we can
observe that our HMT-RN variant always surpasses the LSTM
baseline significantly, demonstrating the effectiveness of our
proposed region-based tasks to alleviate sparsity.

• For the MF, RNN and GRU baselines, like the LSTM baseline, as
they similarly rely on the sparse User-POI matrix for learning,
they do not perform as well. Although Flashback, STP-UDGAT
and LSTPM also learn from the sparse User-POI matrix, each of
them model additional factors to improve performances, such as
spatio-temporal relationships among POIs in different ways.

• Our HMT-GRN variant always outperforms the HMT-RN vari-
ant, with the only difference being replacing the LSTM layer
in HMT-RN with a GRN layer to perform shared feature learn-
ing. This increase in performance indicates the importance of
the GRN module to also learn global spatio-temporal POI-POI
relationships, as the LSTM only learns sequential dependencies.

• For STGCN and HST-LSTM, similar to [31, 32], we believe that
these models may not have performed well by learning from the
spatial and temporal intervals between 𝑙𝑡𝑖−2 and 𝑙𝑡𝑖−1 .

5.5 Efficiency
In Table 3, we compare the performance between Greedy Search
(GS) (i.e. 𝛽 = 1), an exhaustive method of BFS, and our HBS (𝛽 = 10
and 𝛽 = 100) on the multiple task distributions in the hierarchical

Table 4: Effectiveness of proposed tasks for HBS.

Dataset 𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR

Gowalla

All Tasks 0.0539 0.1369 0.1920 0.2579 0.1008
G@2 + POI 0.0490 0.1335 0.1883 0.2611 0.0980
G@3 + POI 0.0517 0.1364 0.1943 0.2652 0.1004
G@4 + POI 0.0471 0.1299 0.1871 0.2588 0.0946
G@5 + POI 0.0459 0.1294 0.1815 0.2479 0.0931
G@6 + POI 0.0462 0.1255 0.1739 0.2401 0.0912
POI 0.0461 0.1215 0.1711 0.2347 0.0898

Foursquare

All Tasks 0.0686 0.1756 0.2507 0.3386 0.1288
G@2 + POI 0.0597 0.1621 0.2303 0.3221 0.1183
G@3 + POI 0.0605 0.1637 0.2341 0.3229 0.1193
G@4 + POI 0.0593 0.1605 0.2295 0.3183 0.1167
G@5 + POI 0.0589 0.1586 0.2253 0.3088 0.1152
G@6 + POI 0.0582 0.1566 0.2211 0.3046 0.1137
POI 0.0563 0.1535 0.2178 0.3009 0.1113

𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR
0

0.1

0.2
10km 40km HBS

(a) Gowalla.

𝑁 2-Acc@1 𝑁 2-Acc@5 𝑁 2-Acc@10 𝑁 2-Acc@20 𝑁 2-MRR
0

0.1

0.2

0.3 10km 40km HBS

(b) Foursquare.

Figure 5: Comparison of search space reduction methods.

Acc@1 Acc@5 Acc@10 Acc@20 MRR
0

0.2

0.4 No Selectivity HMT-GRN

(a) Gowalla.

Acc@1 Acc@5 Acc@10 Acc@20 MRR
0

0.2

0.4
No Selectivity HMT-GRN

(b) Foursquare.

Figure 6: Impact of the selectivity layer.

graph𝐺ℎ𝑠 with the𝑁 2 metrics, which are more challenging. Results
show that our HBS with 𝛽 = 100 has mostly better or comparable
performances to BFS by only expanding the top-𝛽 promising ver-
tices of each task distribution instead of all vertices (i.e. BFS). More
importantly, in Fig. 4, we can see that our HBS (𝛽 = 100) requires
much less time to compute the joint probabilities, specifically 5 and
7 times faster than BFS for the Foursquare and Gowalla datasets
respectively. Therefore, our HBS provides both performance and
efficiency gains significantly.

5.6 Analysis
Importance of proposed tasks. In Table 4, we similarly eval-

uate the performance of our HBS on the 𝑁 2 metrics, but by de-
activating certain task distributions when performing the HBS.
Specifically, All Tasks considers all task distributions in 𝑇𝐾 =

{𝐺@2,𝐺@3...,𝐺@6, 𝑃𝑂𝐼 } for HBS from the graph𝐺ℎ𝑠 , and is used
in our HMT-GRN model, followed by the G@P + POI variants,
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Figure 7: Sensitivity analysis of HMT-GRN.

where each of them uses only two task distributions for HBS, given
𝑃 ∈ {2, 3, 4, 5, 6}. Further, we also include the POI variant which
does not use HBS or any of the proposed next region task distribu-
tions, but only the sparse next POI task distribution 𝑡𝑘𝑃𝑂𝐼 directly
to compute the ranked set (i.e.𝑦𝑡𝑖 = Ψ(𝑡𝑘𝑃𝑂𝐼 )). Notably, we observe
that All Tasks, mostly achieves the best performance by involving
all of the proposed tasks for HBS, demonstrating the necessity of
multiple region-based tasks and our HBS to perform well.

Search space reduction. In Fig. 5, we similarly compare our
HBS with the existing search space reduction methods on the 𝑁 2

metrics:
• HBS is our proposed HMT-GRN model that uses HBS to traverse
on all task distributions from𝐺ℎ𝑠 to rank POIs. The search space
is reduced significantly to only consider the POIs within the top-
𝛽 𝐺@6 regions or cells in the last iteration of our HBS, instead
of all POIs in 𝐿, as described in Section 4.1.

• 40km deactivates our HBS and computes the next POI ranked
set 𝑦𝑡𝑖 = Ψ(𝑡𝑘𝑃𝑂𝐼 ) ⋂

𝐿40𝑘𝑚 where 𝐿40𝑘𝑚 ⊆ 𝐿 is the set of POIs
within 40km of the previous POI input 𝑙𝑡𝑖−1 , as proposed in [4]
to reduce the search space. Similarly, for the 10km variant, the
distance threshold is instead 10km, as separately proposed in
[36, 53].

From Fig. 5, we see that our𝐻𝐵𝑆 variant unanimously surpasses the
10km and 40km variants significantly, which uses simple distance
thresholds. Notably, the threshold-based approaches only work for
test samples if the next POI is indeed within the distance threshold
and not above. This is partly why they did not perform better than
our HBS which considers both near and far POIs. Also, as our HBS
does not require a fixed distance threshold to reduce the search
space and perform well, this eliminates the need for additional
analyses of the datasets to determine the optimal thresholds, which
was necessary and individually analyzed in [4, 36, 53] to identify
the 10km and 40km thresholds.

Figure 8: Test sample prediction from the Gowalla dataset
using our trained HMT-GRN model, predicts the next POI
(airport) correctly, contrasting with the incorrect airport pre-
dicted by using the sparse POI task distribution 𝑡𝑘𝑃𝑂𝐼 directly.
Maps © OpenStreetMap contributors, CC BY-SA.

Selectivity layer. In Fig. 6, we evaluate the importance of our
selectivity layer from Eq. (12). As the layer is only used in the
test samples for Acc@𝐾 and MRR that includes both visited and
unvisited POIs, we omit the 𝑁 2 metrics as they would have the
same results. Fig. 6 shows a comparison of our HMT-GRN model
and its variant where the selectivity layer is deactivated, with a
prominent decrease of performance shown for all metrics and all
datasets. As the layer is deactivated, the model does not know
when to personalize or explore, thereby always computing the joint
probability for all test samples, resulting in poorer performance.

Sensitivity. In Fig. 7, we study the sensitivity of our HMT-GRN
model to different hyperparameters. For simplicity, we use the MRR
and 𝑁 2-MRR metrics as they best describe the overall performance
of the ranked set predicted as compared to the Acc@𝐾 and 𝑁 2-
Acc@𝐾 metrics which focuses more on the top 𝐾 for real-world
applications. In Fig. 7(a), we see that the model performs stably,
with mostly the best performance at 1,024 ℎ𝑑𝑖𝑚 hidden size for our
GRN module. In Fig. 7(b), the embedding size 𝛿 used for our POI,
user and geohash embeddings, similarly reaching best performance
at 1,024. Lastly, in Fig. 7(c), we observe that the model converges at
epoch 20. Thus, we used these hyperparameters in our experiments.

5.7 Case Study
In Fig. 8, we see a real-world test sample prediction made by our
HMT-GRN model, which correctly predicted the next POI (airport)
for a user who frequently visits airports in her historical sequence.
Using our HBS to traverse the multiple different region and POI
task distributions in the hierarchical spatial graph 𝐺ℎ𝑠 , the opti-
mal search path with the highest log probability is illustrated with
red boxes of increasing granularity (not drawn to scale), correctly
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predicting the airport in the southern region of the map. For com-
parison, we also use the sparse POI task distribution 𝑡𝑘𝑃𝑂𝐼 directly
for prediction (argmax), which also predicted an airport, but in the
wrong region, specifically, the northern region of the map in Fig. 8.
As the user frequently visits the southern region from her past POI
visits (airports and others), this regional preference was learned
by our HMT-GRN model to consider only POIs in the southern
region as the search space. Accordingly, the southern region’s POI
search space is hierarchically reduced by our HBS with decreasing
region or grid cell sizes of sub-regions (e.g. cities and streets) to
rank the search paths. Thus, our HMT-GRN model was able to
correctly predict the next POI (airport), and from the correct region.
Further, same as the variants used in this case study, the significant
improvement of All Tasks from POI in Table 4 shows that there are
numerous similar test samples which were predicted correctly by
our model but not with the POI variant, indicating the necessity of
regional preferences to be learned and utilized.

6 CONCLUSION
This work proposed a novel HMT-GRN model to alleviate the data
sparsity problem by learning the next POI and region distributions
in a multi-task setting, then performing HBS on the task distribu-
tions to reduce the search space of POIs, as well as a selectivity layer
to determine personalization or exploration. Our GRN module also
models both sequential dependencies and global spatio-temporal
POI-POI relationships simultaneously. Experimental results on two
popular real-world LBSN datasets with worldwide POIs demon-
strate the effectiveness of the proposed approach with substantial
improvements over existing works. For future work, we hope to ex-
plore temporally focused tasks to help further reduce data sparsity.
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