
StreamCast: Fast and Online Mining of Power Grid Time Sequences

Bryan Hooi∗ † Hyun Ah Song∗ Amritanshu Pandey‡ Marko Jereminov‡ Larry Pileggi‡

Christos Faloutsos∗

Abstract

How can we efficiently forecast the power consumption of

a location for the next few days? More challengingly, how

can we forecast the power consumption if the temperature

increases by 10◦C, the number of appliances in the grid

increase by 20%, and voltage levels increase by 5%? Such

‘what-if scenarios’ are crucial for future planning, to ensure

that the grid remains reliable even under extreme conditions.

Our contributions are as follows: 1) Domain knowledge

infusion: we propose a novel Temporal BIG model that

extends the physics-based BIG model, allowing it to capture

changes over time, trends, and seasonality, and temperature

effects. 2) Forecasting: our StreamCast algorithm

forecasts multiple steps ahead and outperforms baselines in

accuracy. Our algorithm is online, requiring constant update

time per new data point and bounded memory. 3) What-

if scenarios and anomaly detection: our approach can

handle scenarios in which the voltage levels, temperature,

or number of appliances change. It also spots anomalies in

real data, and provides confidence intervals for its forecasts,

to assist in planning for various scenarios. Experimental

results show that StreamCast has 27% lower forecasting

error than baselines on real data, scales linearly, and runs in

4 minutes on a time sequence of 40 million points.

1 Introduction

The smart electrical grid is a set of technologies designed
to improve the efficiency and security of power delivery.
Estimates [1] suggest that reducing outages in the U.S.
grid could save $49 billion per year, reduce emissions
by 12 to 18%, while improving efficiency could save an
additional $20.4 billion per year. A key part of achiev-
ing this goal is to use monitoring data to accurately
model the behavior of the grid and forecast future load
requirements, especially under extreme conditions such
as changes in temperature, number of appliances in the
grid, or voltage patterns. This allows the grid to remain
reliable even under adverse conditions.

A major challenge is scalability - power systems
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data can be both high-volume and received in real
time. This motivates us to develop fast methods that
work in this online (or streaming) setting. Rather than
operating on an entire dataset at once, online algorithms
allow input that arrives over time as a continuous stream
of data points. When each new data point is received,
the algorithm updates itself - for our algorithm, each
update requires constant time, and bounded memory
(i.e. it does not need to remember the entire history of
the time series).

Hence, our goal is an online algorithm for modelling
and forecasting power consumption of a location. The
input is a stream over time of real and imaginary voltage
and current values:

Informal Problem 1. (Online Model Estimation)

• Given: A continuous stream of values of
real and imaginary current (Ir(t), Ii(t)), voltage
(Vr(t), Vi(t)), and temperature T (t), for t = 1, 2, · · ·

• Estimate: Time-varying parameters of a physics-
based model of electrical load behavior that accu-
rately explains the observed values.

Our model is based on the circuit theoretic BIG
model [9], which characterizes load in the electric grid
by modeling its voltage sensitivities. Importantly, the
use of physics-based models together with current and
voltage state variables improves interpretability. For
instance, real power consuming loads such as light
bulbs can be interpreted as the contribution of the
conductance (G) parameter, while susceptance (B), the
reactive power component, represents the contributions
of motors or capacitors in the grid.

The fitted model is used to forecast future values:

Informal Problem 2. (Multi-step Forecasting)

• Given: values of current (Ir(t), Ii(t)), volt-
age (Vr(t), Vi(t)), and temperature T (t) for
t = 1, · · · , N , and given temperature fore-
casts for the next Nf time steps (i.e. for
t = N + 1, · · · , N +Nf ),
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• Forecast: voltage and current for Nf time steps
in the future; i.e. (Vr(t), Vi(t)) and (Ir(t), Ii(t))
for t = N + 1, · · · , N +Nf .

Due to our physics-based model, our algorithm can
handle what-if scenarios in which the temperatures
or voltages change, which is useful for future planning.

Informal Problem 3. (What-if Scenarios)
• Given: current, voltage and temperature data, as
above,

• Forecast: future values of voltage and current, un-
der the condition that, e.g., temperature increases
by 10◦C, and voltage levels increase by 5%.

Our contributions are as follows:
1. Domain knowledge infusion: we propose a

novel, Temporal BIG model that extends the
physics-based BIG model, allowing it to capture
trends, seasonality, and temperature effects.

2. Forecasting: our StreamCast algorithm fore-
casts multiple steps ahead and outperforms base-
lines in accuracy by 27% or more. StreamCast is
online, requiring linear time and bounded memory.

3. What-if scenarios and anomaly detection:
our approach accurately handles scenarios in which
the voltage levels, temperature, or number of ap-
pliances change. We also use it to detect anomalies
in a real dataset.

Reproducibility: our code is publicly available at
www.andrew.cmu.edu/user/bhooi/power.tar.

2 Background and Related Work

2.1 Related Work

The BIG model for electrical load The constant
power PQ model [16] is a common approach for power
grid modelling. However, industry experience has
shown that it incorrectly characterizes load behav-
ior [14]. Recent advances [3] have shown that load be-
havior at a given time can be accurately described by a
linear relationship between current and voltage. From
circuit theory, this can be represented by a parallel or
series combination of susceptance (B) and conductance
(G). This captures both magnitude and angle, in con-
trast to existing traditional load models [16].

Time series forecasting Classical time-series fore-
casting methods include autoregression (AR)-based
methods, including ARMA, ARIMA [2], seasonal
ARIMA [2], and vector autoregression (VAR) [5]. Ex-
ponential smoothing (ETS) models [22], including Holt-
Winters [22] capture trends and seasonal patterns.
Other methods include Kalman filtering [11], Hidden

Markov Models (HMMs) [12], and non-linear dynami-
cal systems [15].

For power grid load modelling, common approaches
include AR models [7, 17], ETS [10], and neural net-
works [6]. [18, 23] use weather data as inputs. [19] uses
tensor decomposition to forecast power grid time se-
quences.

Contrast with existing literature Other than [19],
all methods above do not use physics-based electrical
models, and do not consider what-if scenarios, while our
approach does both. Compared to [19], our approach
(which is completely different from their tensor-based
approach) additionally allows for weather data, is an
online algorithm, and produces confidence intervals.

Table 1: StreamCast captures the listed proper-
ties. AR++ refers to ARIMA, seasonal ARIMA etc.
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2.2 Background

BIG model The BIG model [9] models the current as
a linear function of the voltage, parameterized by the
BIG parameters: susceptance (B), conductance (G),
and a current offset (αr, αi). G can be interpreted as the
component contributing to real power consuming loads
(e.g. due to light-bulbs), while B can be interpreted as
the contribution of the reactive power component (e.g.
due to motors or capacitors):

Ir(t) = G · Vr(t)−B · Vi(t) + αr + noise

Ii(t) = B · Vr(t) +G · Vi(t) + αi + noise
(2.1)

Holt-Winters model The Holt-Winters model [22]
models a univariate time series x(t) with seasonal struc-
ture. The key idea is to model x(t) as the sum of a non-
seasonal or level component l(t) and a seasonal com-
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ponent s(t). The level component changes according to
smooth trends, while the seasonal component is approx-
imately periodic with period m (e.g. m = 24 for hourly
data with daily seasonality). Smooth trends over time
are modelled by a linear trend b(t), representing the rate
of change of l(t). Full details can be found in [22].

3 Proposed Model

Table 2 shows the symbols used in this paper.

Table 2: Symbols and definitions

Symbols Definitions

N Number of time ticks in time sequences
Ir, Ii, Vr, Vi Real and imaginary current and voltage
B,G, αr, αi BIG parameters (susceptance, conduc-

tance, offset to Ir and Ii)
θ(t) Parameter vector (B,G, αr, αi) at time t
y(t), X(t) BIG in linear model form; see Eq. (3.3)
θL(t) Nonseasonal part of θ(t)
θS(t) Seasonal part of θ(t)
θT (t) Trend in θL(t)
θW (t) Weather part of θ(t)
w Weather coefficients
T0 Temperature threshold
Ninit Initialization period

3.1 Proposed Dynamic BIG Model Consider the
static BIG model in Eq. (2.1). Its parameters
B,G, αr, αr can be interpreted as types of load; but
in practice, these should change over time as appli-
ances are switched on and off, or usage levels change.
How do we add temporal structure to this model? A
natural step is to replace B,G, αr, αr by time series
B(t), G(t), αr(t), αr(t). Eq. (2.1) becomes:

Ir(t) = G(t) · Vr(t)−B(t) · Vi(t) + αr(t) + noise

Ii(t) = B(t) · Vr(t) +G(t) · Vi(t) + αi(t) + noise
(3.2)

For notational simplicity, rewrite this equivalently as:

(
Ir(t)
Ii(t)

)
︸ ︷︷ ︸

y(t)

=

(
Vr(t) −Vi(t) 1 0
Vi(t) Vr(t) 0 1

)
︸ ︷︷ ︸

X(t)


G(t)
B(t)
αr(t)
αi(t)


︸ ︷︷ ︸

θ(t)

+ noise

(3.3)

Now, changes in usage (e.g. appliances switching on
and off) correspond to changes in θ(t). What temporal
patterns do we need to capture? Intuitively, some
appliances follow daily seasonality (e.g. lights used
during working hours), while others follow slow-moving
trends, e.g. a gradual increase in load due to population

growth. Hence, like in Holt-Winters, we decompose θ(t)
into a nonseasonal level part θL(t), and a seasonal part
θS(t); hence, θ(t) = θL(t) + θS(t). Here θL(t) changes
according to smooth trends, while θS(t) has seasonal
patterns, with period m.

To model smooth trends (e.g. population growth),
we additionally define a trend term θT (t), which ap-
proximates the change in θL(t) from one time tick to
the next; i.e. θL(t) ≈ θL(t − 1) + θT (t). Then, our
assumptions under this model are that:

A1: y(t) ≈ X(t)(θL(t) + θS(t)) (Low noise; see (3.3))

A2: θL(t) ≈ θL(t− 1) + θT (t) (Level moves wrt. trend)

A3: θT (t) ≈ θT (t− 1) (Trends change smoothly)

A4: θS(t) ≈ θS(t−m) (Seasonality)

We will formalize these as soft constraints in our opti-
mization objective in Section 4.

3.2 Dynamic BIG with Temperature Model
Let T (t) denote the temperature at time t. When tem-
perature increases above a threshold, electricity demand
tends to increase due to the use of air conditioning. To
capture this, we introduce weather coefficients w and
a temperature threshold T0: temperature over the
threshold linearly adds to a weather component θW (t).
Hence, we replace assumption A1 with:

A1’: y(t) ≈ X(t)(θL(t) + θS(t) + θW (t)), where
θW (t) = w ·max(0, T (t)− T0)

The max function ensures that only temperatures above
the threshold contribute to the weather component.

4 Proposed Optimization Objective

We now define our optimization objective based on our
assumptions A1’ to A4. All norms are L2 norms, for
later computational simplicity.

L = L1 + λL2 + µL3 + νL4, where:

L1 =

N∑
t=1

‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2

L2 =

N∑
t=2

‖θL(t)− θL(t− 1)− θT (t)‖2

L3 =

N∑
t=1

‖θT (t)− θT (t− 1)‖2

L4 =

N∑
t=m+1

‖θS(t)− θS(t−m)‖2

(4.4)

Here λ, µ, ν > 0 are hyperparameters (which we end up
tuning indirectly rather than directly; see Section 5).
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The problem to solve is then:

minimize
θL,θT ,θS ,w,T0

L(4.5)

5 Proposed StreamCast Algorithm

How do we approximately minimize L in an efficient and
online manner?

5.1 Overview In this section, we outline our pro-
posed StreamCast. StreamCast has two steps: 1)
an offline step TempFit, which takes a subset of Ninit

data points, and fits w and T0; 2) an online ‘extension’
stage StreamFit: upon receiving each new data point
at time t, this updates θL, θT , θS according to Eq. (5.7).

Algorithm 1 StreamCast

Require: Streams Vr, Vi, Ir, Ii
1: w, T0 ← TempFit(Vr(1 : Ninit), Vi(1 : Ninit)

Ir(1 : Ninit), Ii(1 : Ninit))
2: while input at time t is received: do
3: Update θL(t), θT (t), θS(t) using StreamFit
4: end while

We will describe StreamFit in Section 5.2, and
TempFit in Section 5.3.

5.2 Streaming Optimization (StreamFit)
StreamFit estimates θL, θT and θS for fixed tempera-
ture parameters w, T0, by minimizing our objective, Eq.
(4.5). Note that Eq. (4.5) could in theory be minimized
using least squares; however, this is not online, and is
also much too slow as it contains O(N) unknowns for
N time points, which would then take around O(N3)
time. We would like a linear-time algorithm with
constant update time per data point.

Our approach is to split up the objective over t, and
take gradient update steps with respect to the term for
t = 1, 2, · · · successively. At time t, we take a gradient
step with respect to only the terms of L corresponding
to time t. This allows the fitted parameters to ‘track’ the
true values over time as we perform gradient updates.
Meanwhile, each update is highly efficient as it only
involves a single term of the objective function. Assume
that we have fit θL, θT , θS up to time t−1 and are fitting
them at time t. The component of L for time t is:

L(t) = ‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2

+ λ‖θL(t)− θL(t− 1)− θT (t)‖2

+ µ‖θT (t)− θT (t− 1)‖2 + ν‖θS(t)− θS(t−m)‖2

(5.6)

To do gradient descent at time t, we start from
the previously learned values and take a gradient step.
Hence, we start by assuming the previous trend (θT (t) =

θT (t−1)) and seasonality (θS(t) = θS(t−m)), while for
the level we follow a ‘default extrapolation’ of starting
at the previous level and following the previous trend
(θL(t) = θL(t− 1) + θT (t− 1)).

Next, we want to move in the gradient direction
with respect to minimizing L. Computing the gradients
of (5.6) is straightforward and results in the update
equations: letting ŷ(t) = X(t)(θL(t − 1) + θT (t − 1) +
θS(t−m) + θW (t)),

θL(t) = θL(t− 1) + θT (t− 1)︸ ︷︷ ︸
default extrapolation

+αX(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

θT (t) = θT (t− 1)︸ ︷︷ ︸
previous trend

+β (θL(t)− θL(t− 1)− θT (t− 1))︸ ︷︷ ︸
gradient update

θS(t) = θS(t−m)︸ ︷︷ ︸
previous seasonality

+γ X(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

(5.7)

α, β, γ > 0 are ‘learning-rate’ tuning parameters
that replace λ, µ, ν. We will consider how to set these,
and how to initialize θL, θT and θS , in Section 5.3.

5.3 Temperature Model Optimization
(TempFit) In TempFit, we optimize the tem-
perature coefficient w and threshold T0 using an
alternating approach. First, fixing w and T0, we solve
for θL, θT and θS to minimize L. We then do the
reverse (fixing θL, θT and θS and solving for w and
T0), until convergence, as shown in Algorithm 2. The
former step of solving for θL, θT and θS given w and T0
is done using StreamFit.

Algorithm 2 TempFit

Require: Vr, Vi, Ir, Ii
1: while not converged do
2: Solve θL, θT , θS using Eq. (5.7) (StreamFit)
3: Solve w, T0 by minimizing Eq. (5.8)
4: end while

It remains to solve for w and T0 for fixed θL, θT , θS .
Define r(t) = y(t) − X(t)(θL(t) + θS(t)). Then, since
changing w and T0 only affects the L1 loss term,
minimizing L is equivalent to minimizing:

L′ =

N∑
t=1

‖r(t)−X(t) · w ·max(0, T (t)− T0)‖2(5.8)

Minimizing over w is a straightforward least squares
problem. Minimizing over T0 is less straightforward
since max(0, T (t) − T0) is nonlinear in T0. However,
temperature is typically given to 0 or 1 decimal of
precision (roughly the precision of most thermometers),
and varies within a fairly narrow range, e.g. 0◦C to
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35◦C. Hence, it suffices to try all thresholds between
mint T (t) and maxt T (t) in intervals of 0.1◦C, and select
among these to minimize L′.

To complete our algorithm, we need to ex-
plain how to choose α, β, γ, and initial values for
θL(t), θT (t), θS(t). We select the former using nonlin-
ear optimization (Levenberg-Marquadt algorithm [13])
of L. For the latter, it can be verified that the objec-
tive L is a quadratic in these initial values, so we solve
for them using least squares. We do these in Line 2
of TempFit, then fix these values subsequently for the
rest of the algorithm (Line 2-4 of StreamCast).

5.4 Forecasting Step (Forecast) Given fitted
model parameters up to time N , how do we forecast
future currents Îr(t), Îi(t), for t = N + 1, · · · , N +Nf?

We first forecast voltages V̂r(t), V̂i(t), t = N +
1, · · · , N +Nf using standard univariate Holt-Winters.
Then, for k = 1, 2, · · · we forecast θ(N+k) as the sum of
last estimated level θL(N), trend θT (N), last estimated
seasonality at the corresponding position θS(N−m+1+
((k−1) mod m)), where mod is the modulo function,
and temperature component w ·max(0, T (N + k)−T0).
Finally, we forecast Îr(t), Îi(t) using the BIG model,
Eq. (3.2).

5.5 Extensions

Anomaly Detection To detect anomalies, we com-
pute an anomaly score at each time. Intuitively, the
larger the error between the fitted and actual values,
the more anomalous a point is. The fitted values
Îr(t), Îi(t) are obtained by plugging the learned param-
eters into the BIG equations, Eq. (3.2). The real and
imaginary errors are then Er(t) = Ir(t) − Îr(t), and
Ei(t) = Ii(t) − Îi(t). The anomalousness at time t is
then the sum of real and imaginary errors at time t,
each in units of inter-quartile ranges (IQRs1):

anomalousness(t) =
Er(t)

IQR(Er(1 : N))
+

Ei(t)

IQR(Ei(1 : N))

While any threshold may then be used, we can follow
common practice of designating deviation of ≥ 2 ×
IQR as outliers, resulting in a threshold of 4 for our
anomalousness score. In Section 6.4 we show a clear
anomaly found in the LBNL dataset.

Confidence Intervals Confidence intervals allow us
to provide lower and upper bounds that contain future

1The IQR is the difference between 75% and 25% quartiles,

used as a more robust measure of spread compared to standard
deviation. [21]

values, with e.g. 95% confidence. We use the past
distribution of residuals, Ir(t)− Îr(t) and Ii(t)− Îi(t), as
an estimate of residuals in the future. Thus, we sample
a ‘possible future’ by repeatedly sampling from this
distribution of past residuals, and treating the sampled
values as residuals at time N +1, repeating this process
for N + 2, and so on. We sample 1000 possible futures
in this way. To generate (1−α) confidence intervals, we
use the empirical α/2 and (1 − α/2)-quantiles of these
possible futures. The results are shown in Figure 6.

6 Experiments

We design experiments to answer the questions:

• Q1. Forecasting accuracy: how accurately does
StreamCast forecast, based on real data?

• Q2. Scalability: how does the algorithm scale
with the data size?

• Q3. What-if scenarios: does StreamCast give
accurate results under what-if scenarios, and detect
real anomalies in real data?

Our code and links to datasets are publicly avail-
able at www.andrew.cmu.edu/user/bhooi/power.tar.
Experiments were done on a 2.4 GHz Intel Core i5 Mac-
book Pro, 16 GB RAM running OS X 10.11.2. We set
Ninit to 10m (i.e. 10 days) in our experiments.

6.1 Data We use the following two datasets:

• CMU data: (N = 648) hourly voltage and current
for the Carnegie Mellon University (CMU) campus
for 23 days, from July 29, 2016 to August 20, 2016.
Voltage angle is unavailable for this data, so here
Vr is the voltage magnitude and Vi = 0.

• LBNL data: (N = 3168) from the Lawrence
Berkeley National Laboratory (LBNL) Open
µPMU project [20], from October 1, 2015 to Oc-
tober 11, 2015. The data is originally at 120Hz,
but we downsample it to one sample every 5 min-
utes (where each new data point is the mean of the
raw data within those 5 minutes).

6.2 Q1. Forecasting accuracy

Baselines our baselines are ARIMA [2], Holt-
Winters (ETS) [4], seasonal ARIMA [2], PowerCast
(PCAST) [19] (a recent tensor-based power grid fore-
casting approach), and vector autoregression (VAR),
which uses temperature data and the voltage time se-
quences as input. Following standard practice, the
ARIMA, SARIMA, and VAR orders are selected using
AIC (Akaike information criterion) [8], and the Holt-
Winters hyperparameters are selected using nonlinear
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Figure 1: StreamCast forecasts accurately: it
has at least 27% lower forecasting error than baselines.
Error bars show 1 standard deviation.

optimization. For PowerCast, we follow the original pa-
per in setting Nw = 5, σ = 0.5.

Experimental setup in each trial, an algorithm is
given the data for the first N days and forecasts Ir
and Ii for each time point of the (N + 1)th day,
where we average each algorithm’s accuracy over N =
11, 12, · · · , 20 for CMU and N = 4, 5, · · · , 8 for LBNL.
The forecasts are compared with the true values using
normalized RMSE: RMSE(x, x̂) =

√
‖x− x̂‖22/‖x‖22,

where x = [Ir Ii] contains Ir and Ii values stacked
into a single vector.

Results: Figure 1 shows that StreamCast outper-
forms the baselines in both datasets, with at least 27%
lower RMSE. The tensor-decomposition based PCAST,
which is also physics-based, is the second-best per-
former, suggesting that physics-based models may be
beneficial for forecasting.

6.3 Q2. Scalability We run StreamCast on a
version of our CMU dataset, duplicated repeatedly so
as to produce larger datasets. We run StreamCast on
time series of sizes as plotted on the x-axis of Figure 2,
from around 1 million to around 40 million. The plot is
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Figure 2: StreamCast is fast and scales linearly:
growth parallel to the diagonal indicates linear growth.

parallel to the diagonal, indicating linear growth.
StreamCast takes less than 4 minutes for the trial

of size 40 million, making it scalable to large datasets.

6.4 Q3. What-if scenarios

Changing temperature and number of appli-
ances: how can we forecast under the scenario that
temperature increases by 10◦C, and number of appli-
ances increases by 20%? Such scenarios are useful for
future planning, but standard forecasting methods can-
not handle them. The BIG parameter G represents
the contribution of the conductive load component (e.g.
light-bulbs) and B as the contribution of the reactive
load component (e.g. motors), so we examine the re-
sults of increasing either G, B, or temperature, and plot
how the forecasts change under each scenario.

The results are shown in Figure 3. The left plots
are for increasing G; the center plots for changing B,
and the right plots for increasing temperature. Upper
plots are for Ir while lower plots are for Ii. In each
plot, the colored lines correspond to different amounts
of increase: e.g. 1.1 × G means that the amount of
reactive load on campus increased by 10%. The results
show that: 1) when G is increased, only Ir increases,
but not Ii; 2) when B is increased, only Ii increases,
but not Ir; 3) when temperature increases, both Ir and
Ii increase. All three results are intuitive, given that
in the CMU dataset we have Vi = 0; it can be verified
from (3.2) that in this case Ir should be influenced by
changes in G, but not by changes in B.

Changing voltage An important goal in practice is to
ensure that the system can make accurate predictions
under changes to voltage levels. To test our model, we
use an electrical system simulator, SUGAR [16]. The
simulator uses physics-based models for different elec-
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Figure 3: StreamCast can handle forecasting under what-if scenarios: the plots show the results of 1)
increasing G; 2) increasing B; and 3) increasing temperature.

trical equipment: we specify 10 motors and additional
load with maximum resistance 50Ω, varying sinusoidally
with daily periodicity. SUGAR generates realistic time
series currents for an electrical system given specified in-
put voltages Vr, Vi. In order to have a realistic voltage
series, our input voltages are the voltage series from our
CMU dataset. We obtain currents (Ir, Ii) as outputs
from this simulation.

To test StreamCast, we fit it on (Vr, Vi, Ir, Ii),
but then evaluate its RMSE on a different (V ′r , V

′
i , I
′
r, I
′
i)

in which Vr and Vi are defined in one of two ways: 1)
Increase: V ′r = 1.05×Vr, V ′i = 1.05×Vi. 2) Decrease:
V ′r = 0.95× Vr, V ′i = 0.95× Vi. We then obtain I ′r and
I ′i from the same electrical simulation under voltages V ′r
and V ′i .

Standard forecasting methods would not work as
baselines, since an electrical model is needed to ac-
curately predict what happens to I when V changes.
Hence, we use the following baselines: 1) PQ: this is
the same as our StreamCast approach, but substitut-
ing the BIG model with the more common PQ electrical
model [16]. 2) PowerCast [19] as in the previous section;
3) Windowk: this fits the static BIG model (Section 2.2)
to short time windows of size k, where k = 2, 4, 8, 16.

Figure 4 shows the fit of StreamCast, PQ and
Window4 against the true values (the remaining meth-
ods are not plotted for visibility, but their RMSE is in
Table 3), and Table 3 shows the RMSE of each method
against the true values. StreamCast outperforms the
baselines by a clear margin. Because PQ is a constant-
power model, increases in voltage magnitude necessarily
lead to the model predicting a decrease in current of a
similar magnitude. However, in practice, both voltage
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Increase 0.19 7.13 5.26 11.18 4.94 4.95 4.72
Decrease 0.27 7.69 5.66 9.46 5.78 5.56 4.58

Table 3: StreamCast is accurate even under
different voltage levels: here the methods are tested
on what-if scenarios with different voltage levels. Bold
underline shows the best performer. Error values are
given as percentage RMSE (i.e. RMSE ×100).

and current can change in the same direction, in which
case the PQ model makes the wrong qualitative predic-
tions. The Windowk baselines tend to overfit to near-
term behavior due to their use of windows; this explains
the high variance over time in Figure 4.

Anomaly Detection Section 5.5 explains how to de-
tect anomalies under our method; Figure 5 shows the
results on the LBNL dataset, where our method out-
puts a plot (‘anomalousness’) of the anomaly score over
time. There is a large spike in anomalousness around
day 2; note that the anomaly is not at all visible from
only the current time series. In the voltage time series,
however, we find a 2-second period of quick oscillations
between negative and positive values exactly at the time
of the anomaly. Follow-up analysis reveals that the os-
cillation is likely an error in the measuring device: the
complex angle of voltage is synchronized with the rest of
the system via a GPS signal, and in case of loss of this
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Figure 4: StreamCast accurately responds to changes in voltage: forecasts of Ir and Ii by each method
vs. true values, when voltage was increased or decreased by 5%. StreamCast fits the data more accurately then
baselines. RMSE results (with additional baseline methods) are in Table 3.
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Figure 5: StreamCast detects an anomaly in the LBNL dataset. It corresponds to a 2-second period
where voltage rapidly oscillates between negative and positive values.

GPS signal, we may observe oscillations such as those
in Figure 5, which explains why the voltage magnitude
remains stable while the angle oscillates.

Confidence Intervals Confidence intervals are useful
for obtaining ranges of predictions: e.g. when moni-
toring the grid. Section 5.5 explains how we compute
them. 95% and 99% confidence intervals on our CMU
dataset are shown in Figure 6.

7 Conclusion

Our contributions are as follows:
1. Domain knowledge infusion: we propose a

novel, Temporal BIG model that extends the
physics-based BIG model, allowing it to capture
changes over time, trends, seasonality, and temper-
ature effects.

2. Forecasting: our StreamCast algorithm fore-
casts multiple steps ahead and outperforms base-
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Figure 6: StreamCast provides confidence inter-
vals.

lines in accuracy. StreamCast is online, requiring
linear time and bounded memory.

3. What-if scenarios and anomaly detection:
our approach accurately handles scenarios in which
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the voltage levels, temperature, or number of appli-
ances change. We also use it to detect anomalies in
a real dataset. Finally, StreamCast provides con-
fidence intervals for its forecasts, to assist in plan-
ning for various scenarios.

Reproducibility: our code is publicly available at
www.andrew.cmu.edu/user/bhooi/power.tar.
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