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Proof of Safe Pruning (Theorem 1)
Let S∗ = arg maxS⊆V TELLTAIL(S) and s = bn/2c. De-
fine:

∆(S) = (sβ − (s− 1)β)TELLTAIL(S) + µ0(sα − (s− 1)α)
(1)

Theorem 1 (Safe Pruning). For any node i, if i ∈ S∗, we
have:

Devi ≥ ∆(S∗) ≥ ∆(S) ∀ S ⊆ V (2)

Thus, we can prune nodes with deviation less than ∆(S), for
any S.

Proof. Define k∗ = |S∗|, and γ = kα∗ − (k∗ − 1)α, and
δ = kβ∗ − (k∗ − 1)β .

Since Devi is the sum of positive modularity terms along
the ith row of B, Devi is an upper bound for how much
adjusted mass the ith row can contribute to ẽ(S∗). Hence:

TELLTAIL(S∗) ≥ TELLTAIL(S∗ \ {i}) (3)

=⇒ ẽ(S∗)− µ0 · kα∗
kβ∗

≥ ẽ(S∗)− Devi − µ0 · (k∗ − 1)α

(k∗ − 1)β

(4)

=⇒ ẽ(S∗)− µ0 · kα∗
kβ∗

≥ ẽ(S∗)− Devi − µ0 · kα∗ + µ0 · γ
kβ∗ − δ

(5)

=⇒ − δ · ẽ(S∗) + µ0 · δ · kα∗ ≥ −kβ∗ · Devi + kβ∗ · µ0 · γ
(6)

=⇒ TELLTAIL(S∗) ≤ Devi − µ0γ

δ
(7)

=⇒ Devi ≥ δ · TELLTAIL(S∗) + µ0 · γ (8)
=⇒ Devi ≥ ∆(S∗) (9)

The second inequality ∆(S∗) ≥ ∆(S) ∀ S ⊆ V follows
from TELLTAIL(S∗) ≥ TELLTAIL(S), since this implies
that ∆(S∗) ≥ ∆(S) ∀ S ⊆ V .
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Proof of Consistency (Theorem 2)
Theorem 2 (Consistency). Let G be a graph drawn from G,
and fix k. Define any fixed z > 0, and let yn = −σ(µ̂n)(1−
z)/ξ. Then as n → ∞, there exists a sequence1 of Nn →
∞, εn → 0 such that:

1− F̂ (µ̂n + yn)

1− F (µ̂n + yn)

P→ 1

where P→ denotes convergence in probability.

Fix N and let n→∞. Consider an n-node graph G ∼ G
and random subsets S1, . . . , SN of size k. For any i, j,
the probability that Si and Sj are completely disjoint is
(n−kn )k → 1 as n → ∞ (recall that k is fixed). Extending
this to all of the pairs of i, j by union bound, the probabil-
ity that all of S1, . . . , SN are disjoint goes to 1 as n → ∞.
This implies that with high probability, S1, . . . , SN are dis-
joint and hence are i.i.d. samples of size k from G, and their
masses (denoted by m1, . . . ,mN ) are i.i.d. samples from F .
Note that the event in which S1, . . . , SN are non-disjoint has
probability converging to zero, and since the statement we
want to prove is about convergence in probability, this event
can be ignored.

At this point, m1, . . . ,mN is an i.i.d. sample from a dis-
tribution F , and our algorithm TAIL estimates a GP distri-
bution using maximum likelihood from this sample. (Smith
1987) shows that under these conditions, the maximum like-
lihood procedure produces consistent estimators of the tail
probabilities of the distribution F . Formally:

1− F̂ (µ̂n + yn)

1− F (µ̂n + yn)

P→ 1

i.e. F̂ converges to F , measured in terms of relative error
with respect to the CCDF 1− F .

TellTail: Estimator for µ0

Let A be the adjacency matrix, d be the column vector of
node degrees, B = A− d · dT /(2m), and s = bn/2c. Then

1Nn, εn, µ̂n denote the original variables (N, ε, µ̂) indexed over
runs corresponding to different values of n.



we will show that the following provides a reasonable ap-
proximator for µ0, based on a Central Limit Theorem-based
approximation:

µ̂0 = s−α(p2S1 + z1−ε(p2S2 + p3(S3 − 2S2)

+ p4(S2
1 + S2 − S3)− (p2S1)2)1/2)

(10)

where: S1 =
∑
i<j Bij , S2 =

∑
i<j B

2
ij , S3 =∑n

i=1(
∑n
j=1Bij)

2, pr =
∏r
j=1(s−j+1)/

∏r
j=1(n−j+1),

and z1−ε is the (1− ε)-quantile of a standard normal distri-
bution.

To show this, we first give a lemma:
Lemma 1. The mean and variance of ẽ(S) are:

E(ẽ(S)) = p2S1

Var(ẽ(S)) = p2S2 + p3(S3 − 2S2)

+ p4(S2
1 + S2 − S3)− (p2S1)2

(11)

Proof. Define random variables Zij = Bij1{i ∈ S, j ∈ S}.
Note that ẽ(S) =

∑
i<j Zij . Substituting this into E(ẽ(S))

and Var(ẽ(S)) and expanding with further computation
gives the result.

We now derive our estimator (10) for µ0. Consider sub-
graphs of size s = bn/2c. For subgraphs S of this large
size, ẽ(S) can be expressed as a sum over individual edges:
ẽ(S) =

∑
i<j Zij , which recalling the Central Limit The-

orem, suggests approximating ẽ(S) with a normal distribu-
tion. From our initial definition of the GP distribution and
parameters, µ(s) is the minimum value in the GP distribu-
tion’s support. Since we threshold the data at its (1 − ε)-
quantile, µ(s) is the (1 − ε)-quantile of the subgraph mass
distribution. For s = bn/2c, this distribution is approxi-
mately Gaussian, so the corresponding (1− ε)-quantile is:

µ(n/2) ≈ E(ẽ(S)) + z1−ε
√

Var(ẽ(S)) (12)

The power-law plot for µ passes through the point (s, µ(s)),
so substituting into the Dense Subgraph Power Law, its in-
tercept is µ0 = µ(s)/(s)α. Combining this with (11) gives
the final result.

Computing S1, S2, S3

Recall that S1 =
∑
i<j Bij , S2 =

∑
i<j B

2
ij , S3 =∑n

i=1(
∑n
j=1Bij)

2.
Computing S1 to S3 naively is O(n2), by this can be sped

up to linear time using matrix operations.
Lemma 2. S1 to S3 can be computed in O(m) time.

Proof. However, B = A − d · dT /(2m), a sum of a sparse
and a low rank matrix. This substitution allows us to rewrite
the expressions for S1 to S3:

S1 =

∑n
i=1 d

2
i

4m
(13)

S2 =
∑
i<j

A2
ij −

dTAd

2m
+

(
∑n
i=1 d

2
i )

2 −
∑n
i=1 d

4
i

8m
(14)

S3 =

∑n
i=1 d

4
i

4m2
(15)

The only terms that require matrix operations are
∑
i<j A

2
ij

and dTAd. Both can be computed in O(m) time using stan-
dard sparse matrix operations.

Subgraph Mass Distribution Plots in Real
Data

Figure 1 plots the empirical distribution of subgraph masses
for all 8 of our original datasets as plotted in Table III of the
paper, and all 5 of the Twitter subset graphs.

Proof of NP Completeness
In this section, we show that maximizing TELLTAIL is
NP-complete. Let ẽG(S) denote the adjusted mass of sub-
set S with respect to the graph G, i.e. ẽG(S) = e(S) −
d(S)2/(4m), all with respect toG. Define the following two
problems:

Problem 1 (Modularity). Given a graph G, does there exist
a subset S of its nodes that such ẽG(S) > 0?

The NP-hardness of modularity maximization was first
shown by (Brandes et al. 2007), though this differs from
the formulation here. The NP-hardness of this exact formu-
lation was shown by (Dinh, Li, and Thai 2015). They do
this by reducing the known NP-hard PARTITION problem, of
partitioning n integers x1, · · · , xn into two subsets of equal
sum, to the MODULARITY problem. To do this, they show
that given x1, · · · , xn, we can construct a graph such that a
subset S of positive modularity exists iff there exists a par-
tition of x1, · · · , xn into two halves of equal sum, which
completes the reduction and establishes the NP-hardness of
MODULARITY.

The problem we are interested in is:

Problem 2 (TELLTAILPROB). Given a graphG′, does there
exist a subset S of its nodes such that TELLTAILG′(S) > 0?

We now show our main NP-completeness result:

Theorem 3. TELLTAILPROB is NP-complete.

Proof. Given a subset S of the nodes of G, we can compute
TELLTAIL(S) in polynomial time. Thus, TELLTAILPROB
can be verified in polynomial time, and is therefore in NP.
It remains to establish that TELLTAILPROB is NP-hard.

We do this by reducing MODULARITY to TELLTAIL-
PROB: given an algorithm A′ that solves TELLTAILPROB,
we show that it can be used as a subroutine in a polynomial-
time algorithm A to solve MODULARITY. Then, since we
know that MODULARITY is NP-hard, this would imply that
TELLTAILPROB is NP-hard as well.

Consider an instance of MODULARITY with graph G.
Construct a new graph G′ by adding r extra nodes to G,
in which the extra nodes have no edges attached to them.
Note then that for any subset S of the nodes of G, the ad-
justed mass of S is the same when computed with respect
to either G or G′: this is because in the formula ẽ(S) =
e(S) − d(S)2/(4m), none of the terms (e(S), d(S) or m)
differ between G and G′.

Consider Eq. (10) for µ0. Each of the pi is at most 1, and
the Si are all constant as we increase r, which we can verify
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(h) InternetAS (n = 34K)
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(j) PoliticsIE (n = 348)
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(m) Rugby (n = 854)

Figure 1: The GP distribution fits the empirical distribution of subgraph masses much more closely than other distributions.
Black crosses indicate the empirical distribution of subgraph masses for subgraphs of size k = b

√
nc, in the form of its

complementary CDF. The colored curves are the best fit GP, Poisson, and Gaussian to the empirical distribution. The Poisson
curve is far to the left of the empirical distributions because Poisson distributions greatly underestimate the number of dense
subgraphs that we should observe.



from Eq. (6) to (8) of the original paper. Then, since G′ has
n + r nodes, we have from Eq. (10) that µ0 ≤ (n+r2 )−αB,
for some B > 0 that does not depend on r.

Set r > 2(4mnαB)(1/α). Then in G′, we have:

µ0 ≤
(
n+ r

2

)−α
B

<
(r

2

)−α
B

= (4mnαB)(1/α)·(−α)B

=
1

4mnα

Define the algorithm A(G) for MODULARITY that given
G, constructs G′, runs our subroutine for solving TELL-
TAILPROB on G′, and outputs A′(G′). We claim that A(G)
correctly solves MODULARITY. To show this, we consider
two cases:

• case 1: there exists S such that ẽG(S) > 0. Then since
ẽG(S) is a fraction with an integer in the numerator and
a denominator of 4m, we have ẽG(S) ≥ 1/(4m). Then,
recalling that ẽG(S) = ẽG′(S),

TELLTAILG′(S) =
ẽG(S)− µ0|S|α

|S|β

≥
1

4m − µ0|S|α

|S|β

≥
1

4m −
1

4mnα |S|α

|S|β

> 0

Thus A(G) outputs the correct result in this case: A′(G′)
will return ‘true’ since TELLTAILG′(S) > 0, so A(G)
will return ‘true,’ which is correct since ẽG(S) > 0.

• case 2: there does not exist such an S; i.e. ẽG(S) ≤ 0 for
all S. Then for all S,

TELLTAILG′(S) =
ẽG(S)− µ0|S|α

|S|β
≤ ẽG(S)

|S|β
≤ 0

Thus A(G) returns ‘false’, which is the correct result in
this case as well.

In conclusion, A(G) is a correct, polynomial time al-
gorithm for MODULARITY, assuming we have a subrou-
tine A′ that solves TELLTAILPROB. Since MODULARITY
is NP-hard by (Dinh, Li, and Thai 2015), this implies that
TELLTAILPROB is NP-hard as well. Since we also showed
that TELLTAILPROB is in NP, this implies that it is NP-
complete.

Accuracy Plots on Synthetic Data
For space reasons, accuracy results for identifying injected
subgraphs on synthetic data was omitted from the main pa-
per, and are included here in Figure 2.

Additional Results for Baseline Methods
For space reasons, results varying α for the Edge Surplus
method were omitted for the main paper, and are included
here as Tables 1 and 2.
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Figure 2: TAILF outperforms baselines in accuracy for identifying injected subgraphs.
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Table 1: TAILF outperforms baselines in identifying ground truth communities.
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Table 2: TELLTAIL and TELLTAIL+ outperform baselines in identifying ground truth communities.


